MO099REPROGRAMMING HYPERTENSION PROGRAMMED BY HIGH-FAT DIET: THE ROLE OF GARLIC OIL

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
You-Lin Tain ◽  
Chien-Ning Hsu

Abstract Background and Aims Perinatal high-fat (HF) diet programs high blood pressure (BP) in adult offspring. Hydrogen sulfide (H2S) has shown benefits in hypertension by restoration of nitric oxide (NO) bioavailability and alterations of gut microbiota. Garlic, a naturally dietary source of H2S donors, supplementation has shown benefits in hypertension. We aimed to examine whether maternal garlic oil supplementation can prevent hypertension programmed by maternal and post-weaning high-fat diet in adult offspring and whether its protective effects are related to mediation of H2S-genetaing system, alterations of gut microbiota composition, and microbiota metabolite short chain fatty acids (SCFAs). Method Pregnant rats received either a normal diet (ND) or HF diet (D12331, Research Diets, Inc.) Garlic oil (GO) or vesicle was administered daily by oral gavage at 100 mg/kg/day during pregnancy and lactation. Male offspring were weaned at 3 weeks of age, and onto either ND or HF diet to 16 weeks of age. Male offspring were assigned to four groups (n=8/group): ND, HF, ND+GO, and HF+GO. Garlic supplementation during pregnancy and lactation protected against programmed hypertension in adult male offspring fed with HF diet. All offspring were killed at 16 weeks of age. NO-related parameters were analyzed by HPLC. Plasma levels of SCFA were determined using GC-MS method. Fecal microbial community was analyzed using a combination of 16S rRNA gene and fecal metagenome sequence analysis. Results Garlic supplementation during pregnancy and lactation protected against programmed hypertension in adult male offspring fed with HF diet. Garlic oil supplementation caused a significant increase in plasma levels of acetate, propionate, and butyrate. NO bioavailability was augmented by garlic oil supplementation, represented by decreases of plasma levels of asymmetric and symmetric dimethylarginine (ADMA and SDMA) levels, and increased plasma L-arginine-to-ADMA ratio (AAR). HF intake associated with decreased α-diversity was quantified by Shannon diversity index. The Analysis of similarities (ANOSIM) demonstrated the difference in the gut microbiota among the four groups existed (All p < 0.05), indicating that four groups had distinct enterotypes. Additionally, garlic oil supplementation increased abundance of genus Lactobacillus, but decreased genera Turicibacter and Staphylococcus. Moreover, the linear discriminant analysis effect size (LEfSe) algorithm analysis identified several microbial markers including genera Lactobacillus, Staphylococcus, and Turicibacter. Conclusion The beneficial effects of garlic oil were associated with increased renal mRNA expression and activity of H2S-generating enzymes, increased NO bioavailability, increased plasma SCFA levels, and alterations of gut microbiota composition. Our data revealed associations between H2S-generating pathway in the gut and kidneys, NO system, gut microbiota, and microbiota-derived metabolites in hypertension programmed by HF intake and provided insight to garlic oil as a hypertension reprogramming strategy for further translational research.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Liyuan Zhou ◽  
Xinhua Xiao ◽  
Qian Zhang ◽  
Ming Li ◽  
Miao Yu

Abstract Background: Early-life overnutrition programs increased risks of metabolic disorders in adulthood. Regular exercise is widely accepted to be an effective measure to maintain metabolic health. However, the transgenerational effects of maternal exercise and the specific mechanism are largely unclear. Aims: Our objective was to investigate whether maternal exercise could alleviate the metabolic disturbances induced by early-life overnutrition in both dams and offspring and to explore the role of gut microbiota-liver axis in mediating the transgenerational metabolic reprogramming. Methods: C57BL/6 females were randomly divided into three groups 3 weeks before mating and during pregnancy: the control group, high-fat group, and high-fat with exercise group (voluntary wheel running training). They received their original diets during lactation. The male offspring had ad libitum access to chow diet from weaning to 24 weeks of age. Glucose tolerance test and serum biochemical parameters were detected. The cecal contents from dams at weaning and 8-week and 24 week of offspring were collected for 16s rDNA sequencing. Hepatic HE staining and transcriptome were performed in adult offspring. Results: The results showed that perinatal high-fat diet resulted in significant glucose intolerance, insulin resistance and lipid profiles disorders in both dams and offspring. Maternal exercise markedly improved insulin sensitivity in dams and metabolic disorders in offspring from young into adulthood, especially the hepatic steatosis. The decrease in harmful bacteria and the persistent enrichment of short chain fatty acid producers from mothers to adult offspring, particularly the genus Odoribacter, were all associated with improvement in metabolism by maternal exercise. In addition, maternal exercise significant upregulated FGF21 and genes involved in the fatty acid oxidation and TCA cycle in adult offspring, which were down-regulated by perinatal high-fat diet and were significantly correlated with the altered microbial species. Conclusion: Overall, maternal exercise could significantly mitigate the detrimental effects of perinatal high-fat diet on metabolism in both dams and male offspring. The continuous alterations in gut microbiota and reprogramming hepatic metabolism might be critical factors in deciphering the transgenerational metabolic benefits of maternal exercise, which provides some novel evidence and targets for combating the metabolic diseases.


2021 ◽  
Author(s):  
Yilin Liu ◽  
Chunyan Xie ◽  
Zhenya Zhai ◽  
Ze-yuan Deng ◽  
Hugo R. De Jonge ◽  
...  

This study aimed to investigate the effect of uridine on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet-fed mice.


Author(s):  
Sik Yu So ◽  
Qinglong Wu ◽  
Kin Sum Leung ◽  
Zuzanna Maria Kundi ◽  
Tor C Savidge ◽  
...  

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.


2019 ◽  
Vol 10 (2) ◽  
pp. 775-785 ◽  
Author(s):  
Xiang Li ◽  
Huali Wang ◽  
Tianxin Wang ◽  
Fuping Zheng ◽  
Hao Wang ◽  
...  

Wood pulp-derived sterols (WS) supplementation ameliorated HFD-associated metabolic disorder; WS supplementation increased the amounts of fecal sterols excretion and SCFAs content; WS supplementation modulated gut microbiota composition.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2188 ◽  
Author(s):  
Ning-Ning Zhang ◽  
Wen-Hui Guo ◽  
Han Hu ◽  
A-Rong Zhou ◽  
Qing-Pei Liu ◽  
...  

This study investigated the influence of Canarium album extract (CAext) on intestinal microbiota composition of mice fed a high-fat diet (HFD). Kun Ming (KM) mice were fed either a normal chow diet or a HFD for six weeks. At the seventh week, HFD-fed mice were gavaged daily with saline, or a different dose of CAext for four weeks, respectively. Then, the composition of the gut microbiota was analyzed by high-throughput sequencing technology. Analysis of fecal microbial populations, grouped by phyla, showed significant increases of Firmicutes and Verrucomicrobia, but a decrease of Bacteroidetes in all CAext-fed mice. Particularly, CAext gavage in a low dose or a medium dose caused a significant increase in the proportion of Akkermansia. These findings suggested that CAext can alter the gut microbiota composition of HFD-fed mice, and had a potential prebiotic effects on Akkermansia.


2020 ◽  
Vol 11 (2) ◽  
pp. 1624-1634 ◽  
Author(s):  
Zhenxing Shi ◽  
Yingying Zhu ◽  
Cong Teng ◽  
Yang Yao ◽  
Guixing Ren ◽  
...  

α-Amylase inhibitors (α-AI) have great potential to treat obesity.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3553
Author(s):  
Gabor C. Mezei ◽  
Serdar H. Ural ◽  
Andras Hajnal

Maternal intake of high fat diet (HFD) increases risk for obesity and metabolic disorders in offspring. Developmental programming of taste preference is a potential mechanism by which this occurs. Whether maternal HFD during pregnancy, lactation, or both, imposes greater risks for altered taste preferences in adult offspring remains a question, and in turn, was investigated in the present study. Four groups of offspring were generated based on maternal HFD access: (1) HFD during pregnancy and lactation (HFD); (2) HFD during pregnancy (HFD-pregnancy); (3) HFD during lactation (HFD-lactation); and (4) normal diet (ND) during pregnancy and lactation (ND). Adult offspring 70 days of age underwent sensory and motivational taste preference testing with various concentrations of sucrose and Intralipid solutions using brief-access automated gustometers (Davis-rigs) and 24 h two-bottle choice tests, respectively. To control for post-gestational diet effects, offspring in all experimental groups were weaned on ND, and did not differ in body weight or glucose tolerance at the time of testing. Offspring exposed to maternal HFD showed increased sensory taste responses for 0.3, 0.6, 1.2 M sucrose solutions in HFD and 0.6 M in HFD-pregnancy groups, compared to animals exposed to ND. Similar effects were noted for lower concentrations of Intralipid in HFD (0.05, 0.10%) and HFD-pregnancy (0.05, 0.10, 0.5%) groups. The HFD-lactation group showed an opposite, diminished responsiveness for sucrose at the highest concentrations (0.9, 1.2, 1.5 M), but not for Intralipid, compared to ND animals. Extended-access two-bottle tests did not reveal major difference across the groups. Our study shows that maternal HFD during pregnancy and lactation has markedly different effects on preferences for palatable sweet and fatty solutions in adult offspring and suggests that such developmental programing may primarily affect gustatory mechanisms. Future studies are warranted for determining the impact of taste changes on development of obesity and metabolic disorders in a “real” food environment with food choices available, as well as to identify specific underlying mechanisms.


2018 ◽  
Vol 6 (20) ◽  
pp. e13881 ◽  
Author(s):  
Nina Brandt ◽  
Dorota Kotowska ◽  
Caroline M. Kristensen ◽  
Jesper Olesen ◽  
Ditte O. Lützhøft ◽  
...  

2018 ◽  
Vol 63 (2) ◽  
pp. 1800390 ◽  
Author(s):  
Pei‐Sheng Lee ◽  
Chia‐Yi Teng ◽  
Nagabhushanam Kalyanam ◽  
Chi‐Tang Ho ◽  
Min‐Hsiung Pan

Sign in / Sign up

Export Citation Format

Share Document