STEM-11. HYDROGEN SULFIDE FUNCTIONS AS A TUMOR SUPPRESSION IN GLIOBLASTOMA

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi23-vi23
Author(s):  
Daniel J Silver ◽  
Gustavo Roversi ◽  
Nazmin Bithi ◽  
Sabrina Wang ◽  
Katie M Troike ◽  
...  

Abstract Glioblastoma (GBM) cancer stem cells (CSCs) respond to a variety of stimuli within their immediate surroundings. However, little is known about the lifestyle factors that alter CSC enrichment and function within the tumor microenvironment (TME). To examine the consequences of diet-induced obesity on the progression of GBM, we interrogated tumor growth using patient-derived and syngeneic GBM models implanted into the brains of mice fed either an obesogenic high-fat diet (HFD) or a low-fat, control diet. HFD consumption resulted in an accelerated disease trajectory, presenting significantly shortened overall survival. HFD reshaped the TME altering the lipid landscape, enhancing the CSC phenotype, stimulating tumor cell proliferation, and protecting from necrotic cell death. Similar results were not observed in metabolically obese, leptin-deficient (ob/ob) mice. We simultaneously identified a potent suppression of the gasotransmitter, hydrogen sulfide (H2S). H2S functions principally through protein S-sulfhydration and regulates multiple programs including bioenergetics, metabolism, and immune response. Inhibition of H2S increased tumor cell proliferation and chemotherapy resistance, whereas treatment with H2S donors reduced tumor cell fitness in vitro and attenuated GBM growth in vivo. Exogenous treatment with H2S donors also rescued the lipid-mediated increase in tumor cell proliferation. As H2S exerts its action though protein S-sulfhydration, we confirmed that HFD-fed mice, which experienced decreased H2S synthesis, presented a severely depleted S-sulfhydrated protein landscape. Loss of this post-translational modification was confirmed in GBM patient tissues compared to age- and sex-matched controls. Taken together, our findings provide evidence that H2S functions as a tumor suppressor in GBM. Our observations highlight a new mechanism for tumor growth dynamics that can be leveraged for new therapeutic strategies focused on boosting H2S. Finally, our findings indicate that lifestyle factors can have pleiotropic effects on GBM progression through concomitant mechanisms involving tumor metabolism, modifications to the TME, and regulation over the CSC phenotype.

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2459
Author(s):  
Anja Kathrin Wege ◽  
Tobias F. Dreyer ◽  
Attila Teoman ◽  
Olaf Ortmann ◽  
Gero Brockhoff ◽  
...  

CX3CL1 is a multifunctional chemokine that is involved in numerous biological processes, such as immune cell attraction and enhanced tumor immune cell interaction, but also in enhancing tumor cell proliferation and metastasis. The multifarious activity is partially determined by two CX3CL1 isoforms, a membrane-bound and a soluble version generated by proteolytic cleavage through proteases. Here, we investigated the impact of CX3CL1 overexpression in MDA-MB-453 and SK-BR-3 breast cancer cells. Moreover, we evaluated the therapeutic capacity of Matrix-Metalloproteinases-inhibitors TMI-1 and GI254023X in combination with the anti-HER2 antibody trastuzumab in vitro and in vivo. TMI-1 and GI254023X caused a reduced shedding of CX3CL1 and of HER2 in vitro but without effects on tumor cell proliferation or viability. In addition, trastuzumab treatment did not retard MDA-MB-453 cell expansion in vitro unless CX3CL1 was overexpressed upon transfection (MDA-MB-453CX3CL1). In humanized tumor mice, which show a coexistence of human tumor and human immune system, CX3CL1 overexpression resulted in a slightly enhanced tumor growth. However, trastuzumab treatment attenuated tumor growth of both MDA-MB-453CX3CL1 and empty vector transfected MDA-MB-453 transplanted mice but showed enhanced efficiency especially in preventing lung metastases in CX3CL1 overexpressing cancer cells. However, TMI-1 did not further enhance the trastuzumab treatment efficacy.


2012 ◽  
Vol 30 (4_suppl) ◽  
pp. 234-234
Author(s):  
Katherine Ostapoff ◽  
Niranjan Awasthi ◽  
Roderich Schwarz ◽  
Rolf A. Brekken

234 Background: Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to conventional chemotherapy, as result there is an ongoing search to find novel effective strategies. Resistance is due in part to the high proportion of stromal tissue within the primary tumor. This intricate ECM (extracellular matrix) includes heparan-sulfate glycosaminoglycans which participate in tumor progression, angiogenesis and metastasis. PG545 is a heparanase inhibitor developed to target these pathways. Methods: In vitro cell viability assays were performed using WST-1 reagent and migration was evaluated using T- scratch assay. Animal survival experiments were performed by intraperitoneal injection of AsPC-1 (0.75 x 10^6) cells. In vivo tumor growth experiments were performed by orthotopic injection of PanO2-HY (5x10^5) cells. Results: PG545 significantly inhibited proliferation of tumor cells (AsPC-1 and PanO2) and fibroblasts (WI-38). PG545 caused only a modest inhibition in endothelial cell (HUVECs) proliferation. Migration was significantly inhibited by 1 µM PG545 in AsPC-1 and PanO2 after 12 hours. In a metastatic model of pancreatic cancer, treatment with PG545 (10 mg/kg 1st week, 5 mg/kg 2nd week) improved survival (35 days) compared to saline (22 days) and gemcitabine (28 days). In an immunocompetent orthotopic model, mice treated with PG545 (5 mg/kg twice weekly) had significantly decreased tumor weights after 3 weeks of therapy (p=0.002). Total metastatic events were also reduced in PG545 compared to gemcitabine and control treatment in the PanO2 model. Conclusions: PG545 inhibits tumor cell proliferation and migration in vitro and prolongs survival and inhibits tumor growth in vivo. Additionally it inhibits metastasis in vivo. Further studies are underway to elucidate the mechanism of inhibition and changes to pancreatic tumor microenvironment.


2020 ◽  
Author(s):  
Iolanda Ferro ◽  
Jacopo Gavini ◽  
Lisamaria Bracher ◽  
Marc Landolfo ◽  
Daniel Candinas ◽  
...  

AbstractThe small non-coding vault RNA (vtRNA) 1-1 has been shown to confer apoptosis resistance in several malignant cell lines and also to modulate the autophagic flux in hepatocytes, thus highlighting its pro-survival role. Here we describe a new function of vtRNA1-1 in regulating in vitro and in vivo tumor cell proliferation, tumorigenesis and chemoresistance. By activating extracellular signal-regulated kinases (ERK 1/2), vtRNA1-1 knock-out (KO) inhibits transcription factor EB (TFEB), leading to a downregulation of the coordinated lysosomal expression and regulation (CLEAR) network genes and lysosomal compartment dysfunction. Pro-tumorigenic pathways dysregulation and decreased lysosome functionality potentiate the anticancer effect of conventional targeted cancer drugs in the absence of vtRNA1-1. Finally, vtRNA1-1 KO-reduced lysosomotropism, together with a higher intracellular compound availability, significantly reduced tumor cell proliferation in vitro and in vivo. These findings reveal the role of vtRNA1-1 in ensuring intracellular catabolic compartment stability and functionality, suggesting its importance in lysosome-mediated chemotherapy resistance.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ethan P. Metz ◽  
Erin L. Wuebben ◽  
Phillip J. Wilder ◽  
Jesse L. Cox ◽  
Kaustubh Datta ◽  
...  

Abstract Background Quiescent tumor cells pose a major clinical challenge due to their ability to resist conventional chemotherapies and to drive tumor recurrence. Understanding the molecular mechanisms that promote quiescence of tumor cells could help identify therapies to eliminate these cells. Significantly, recent studies have determined that the function of SOX2 in cancer cells is highly dose dependent. Specifically, SOX2 levels in tumor cells are optimized to promote tumor growth: knocking down or elevating SOX2 inhibits proliferation. Furthermore, recent studies have shown that quiescent tumor cells express higher levels of SOX2 compared to adjacent proliferating cells. Currently, the mechanisms through which elevated levels of SOX2 restrict tumor cell proliferation have not been characterized. Methods To understand how elevated levels of SOX2 restrict the proliferation of tumor cells, we engineered diverse types of tumor cells for inducible overexpression of SOX2. Using these cells, we examined the effects of elevating SOX2 on their proliferation, both in vitro and in vivo. In addition, we examined how elevating SOX2 influences their expression of cyclins, cyclin-dependent kinases (CDKs), and p27Kip1. Results Elevating SOX2 in diverse tumor cell types led to growth inhibition in vitro. Significantly, elevating SOX2 in vivo in pancreatic ductal adenocarcinoma, medulloblastoma, and prostate cancer cells induced a reversible state of tumor growth arrest. In all three tumor types, elevation of SOX2 in vivo quickly halted tumor growth. Remarkably, tumor growth resumed rapidly when SOX2 returned to endogenous levels. We also determined that elevation of SOX2 in six tumor cell lines decreased the levels of cyclins and CDKs that control each phase of the cell cycle, while upregulating p27Kip1. Conclusions Our findings indicate that elevating SOX2 above endogenous levels in a diverse set of tumor cell types leads to growth inhibition both in vitro and in vivo. Moreover, our findings indicate that SOX2 can function as a master regulator by controlling the expression of a broad spectrum of cell cycle machinery. Importantly, our SOX2-inducible tumor studies provide a novel model system for investigating the molecular mechanisms by which elevated levels of SOX2 restrict cell proliferation and tumor growth.


Author(s):  
Xiyang Zhang ◽  
Dongbo Jiang ◽  
Shuya Yang ◽  
Yuanjie Sun ◽  
Yang Liu ◽  
...  

Hepatocellular carcinoma (HCC) patients are mostly diagnosed at an advanced stage, resulting in systemic therapy and poor prognosis. Therefore, the identification of a novel treatment target for HCC is important. B-cell receptor-associated protein 31 (BAP31) has been identified as a cancer/testis antigen; however, BAP31 function and mechanism of action in HCC remain unclear. In this study, BAP31 was demonstrated to be upregulated in HCC and correlated with the clinical stage. BAP31 overexpression promoted HCC cell proliferation and colony formation in vitro and tumor growth in vivo. RNA-sequence (RNA-seq) analysis demonstrated that serpin family E member 2 (SERPINE2) was downregulated in BAP31-knockdown HCC cells. Coimmunoprecipitation and immunofluorescence assays demonstrated that BAP31 directly binds to SERPINE2. The inhibition of SERPINE2 significantly decreased the BAP31-induced cell proliferation and colony formation of HCC cells and phosphorylation of Erk1/2 and p38. Moreover, multiplex immunohistochemistry staining of the HCC tissue microarray showed positive associations between the expression levels of BAP31, SERPINE2, its downstream gene LRP1, and a tumor proliferation marker, Ki-67. The administration of anti-BAP31 antibody significantly inhibited HCC cell xenograft tumor growth in vivo. Thus, these findings suggest that BAP31 promotes tumor cell proliferation by stabilizing SERPINE2 and can serve as a promising candidate therapeutic target for HCC.


Oncogene ◽  
2004 ◽  
Vol 23 (33) ◽  
pp. 5616-5623 ◽  
Author(s):  
Martin Oeggerli ◽  
Sanja Tomovska ◽  
Peter Schraml ◽  
Daniele Calvano-Forte ◽  
Salome Schafroth ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54361 ◽  
Author(s):  
Fatma J. Al-Saeedi ◽  
Princy M. Mathew ◽  
Yunus A. Luqmani

Sign in / Sign up

Export Citation Format

Share Document