Identification and Enrichment of Proteolytic Enzymes of IL-2 Activated Rat Natural Killer (A-NK) Cells: Potential Physiological Roles in NK Cell Function

Author(s):  
Richard P. Kitson ◽  
Ken Wasserman ◽  
Ronald H. Goldfarb
2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A230-A230
Author(s):  
Dima Yackoubov ◽  
Aviad Pato ◽  
Julia Rifman ◽  
Sherri Cohen ◽  
Astar Hailu ◽  
...  

BackgroundNicotinamide (NAM), an allosteric inhibitor of NAD-dependent enzymes, has been shown to preserve cell function and prevent differentiation in ex vivo cell culture. GDA-201 is an investigational natural killer (NK) cell immunotherapy derived from allogeneic donors and expanded using IL-15 and NAM. In previous preclinical studies, NAM led to increased homing and cytotoxicity, preserved proliferation, and enhanced tumor reduction of NK cells. In a phase I clinical trial, treatment with GDA-201 showed tolerability and clinical responses in patients with refractory non-Hodgkin lymphoma (NHL) (Bachanova, et. al., Blood 134:777, 2019). While NAM is known to affect cellular metabolism and participate in 510 enzymatic reactions −in 66 as an inhibitor or activator− its mechanism of action and role in GDA-201 cytotoxicity is unknown.MethodsIn order to define the network of intracellular interactions that leads to the GDA-201 phenotype, flow-cytometry, next generation sequencing (NGS), and liquid chromatography–mass spectrometry (LC-MS)-based metabolite quantification were performed on NK cells cultured for 14 days with IL-15 and human serum in the presence or absence of NAM (7 mM). Artificial Intelligence (AI) machine learning analysis was applied by Pomicell in order to analyze the data using the Pomicell databases supporting data extracted from multiple origins including scientific articles organized using natural language processing tools. AI training was done using a combined algorithm designed to blindly explain and predict the transcriptomic and metabolomic (omics) profile.ResultsOmics analyses defined 1,204 differentially expressed genes, and 100 significantly modified metabolites in the presence of NAM. An in silico model was created that successfully predicted the experimental data in 83% of the cases. Upregulation of TIM-3 expression in GDA-201 was predicted to be mediated by inhibition of IL-10 and SIRT3, via CREB1/HLA-G signaling and adrenoceptor beta 2 (ADRB2) upregulation. Adenosine metabolite reduction supports this and suggests dopaminergic activation of NK cytotoxicity. Upregulation of CD62L in the presence of NAM was predicted to be mediated by transcription factor Dp-1 (TFDP1) via dihydrofolate reductase (DHFR) activation and intracellular folic acid reduction. Interferon-gamma and CASP3 modulation (via JUN and MCL1, respectively), via PPARa inhibition, support that finding.ConclusionsIn conclusion, AI machine learning of transcriptome and metabolome data revealed multiple pleiotropic metabolic pathways modulated by NAM. These data serve to further elucidate the mechanism by which NAM enhances cell function, leading to the observed cytotoxicity and potency of GDA-201.Ethics ApprovalWe hereby declare that the collection of the Apheresis units in the three participating institutes (sites) has been done under an approved clinical study that meets the following requirements:1. Ethics approval has been obtained from the local EC at each of the sites, prior to any study related activities.2. The working procedures of the EC at the sites for conduct of clinical studies are in due compliance with local regulations (Israeli Ministry of Health) and provisions of Harmonized International Guidelines for Good Clinical Practice, namely: ICH-GCP.3. Sites follow EC conditions & requirements in terms of submissions, notifications, and approval renewals. 4. Participants gave Informed Consent (approved by the EC) before taking part in the study.5. Informed Consent has been approved by the ECs. The Israeli template of Informed Consent is in used and it includes study specific information (e.g. study goal, design, method, duration, risks, etc.). Name of the Institute Name of the EC/IRB EC Study No.Hadassah Medical Center Helsinki Committee 0483-16-HMORambam Health Care Campus Helsinki Committee 0641-18-RMBIchilov Sourasky Medical Center Tel-Aviv Helsinki Committee 0025-17-TLV


2022 ◽  
Vol 12 ◽  
Author(s):  
Ondrej Venglar ◽  
Julio Rodriguez Bago ◽  
Benjamin Motais ◽  
Roman Hajek ◽  
Tomas Jelinek

Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.


1996 ◽  
Vol 184 (6) ◽  
pp. 2119-2128 ◽  
Author(s):  
L.H. Mason ◽  
S.K. Anderson ◽  
W.M. Yokoyama ◽  
H.R.C. Smith ◽  
R. Winkler-Pickett ◽  
...  

Proteins encoded by members of the Ly-49 gene family are predominantly expressed on murine natural killer (NK) cells. Several members of this gene family have been demonstrated to inhibit NK cell lysis upon recognizing their class I ligands on target cells. In this report, we present data supporting that not all Ly-49 proteins inhibit NK cell function. Our laboratory has generated and characterized a monoclonal antibody (mAb) (12A8) that can be used to recognize the Ly-49D subset of murine NK cells. Transfection of Cos-7 cells with known members of the Ly-49 gene family revealed that 12A8 recognizes Ly-49D, but also cross-reacts with the Ly-49A protein on B6 NK cells. In addition, 12A8 demonstrates reactivity by both immunoprecipitation and two-color flow cytometry analysis with an NK cell subset that is distinct from those expressing Ly-49A, C, or G2. An Ly-49D+ subset of NK cells that did not express Ly49A, C, and G2 was isolated and examined for their functional capabilities. Tumor targets and concanovalin A (ConA) lymphoblasts from a variety of H2 haplotypes were examined for their susceptibility to lysis by Ly-49D+ NK cells. None of the major histocompatibility complex class I–bearing targets inhibited lysis of Ly-49D+ NK cells. More importantly, we demonstrate that the addition of mAb 12A8 to Ly-49D+ NK cells can augment lysis of FcγR+ target cells in a reverse antibody-dependent cellular cytotoxicity–type assay and induces apoptosis in Ly49D+ NK cells. Furthermore, the cytoplasmic domain of Ly-49D does not contain the V/IxYxxL immunoreceptor tyrosine-based inhibitory motif found in Ly-49A, C, or G2 that has been characterized in the human p58 killer inhibitory receptors. Therefore, Ly-49D is the first member of the Ly-49 family characterized as transmitting positive signals to NK cells, rather than inhibiting NK cell function.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi101-vi102
Author(s):  
Amber Kerstetter-Fogle ◽  
Folashade Otegbeye ◽  
David Soler ◽  
Peggy Harris ◽  
Alankrita Raghavan ◽  
...  

Abstract INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary central nervous system malignancy associated with a 12-15 month survival after surgery and radio-chemotherapy. Utilizing adoptive cellular immunotherapy using natural killer (NK) cells has developed over the past two decades for a variety of hematologic malignancies. This approach in solid malignancies is limited by questions of cell dose versus tumor burden, insufficient tumor infiltration, and a tumor microenvironment that suppresses NK cell function. METHODS We isolated NK cells from healthy volunteers and activated them using IL-2, -15, -12, -18, then perform cytotoxic assays in the presence of glioma stem cells. We also tested the efficacy of the NK cells with intracranial delivery in a pre-clinical murine model of glioma. We tested various concentrations of IL-2 and IL-15 on the cytokine culture platform. RESULTS In this study, we demonstrate human NK cells, activated using a cytokine cocktail of interleukins-2, -15, -12, and -18, exert strong cytotoxic events against glioma cell lines. To further examine the efficacy of activated NK cells in vitro, we utilized intracranially xenografted glioma lines and demonstrated a survival benefit with tumor bed injections of these cytokine-activated NK cells (p=0.0089). We were able to confirm that NK cells cultured with low doses (200u IL2; 50ng/ml IL15) of both cytokines are just as effective as higher doses. This is important, as in vivoexhaustion of NK cells stimulated with high doses of either cytokine has been well validated. We also found that low-dose irradiation (4Gy) of glioma cells prior to co-culture with cytokine-activated NK cells promoted increased targeted glioma cell killing within 4 hours(32% cell killing). CONCLUSIONS These findings suggest that in a clinical study, injection of cytokine-activated NK cells into the glioblastoma tumor bed could be used as adjuvant treatment following either stereotactic radiation or surgical resection.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1612-1621 ◽  
Author(s):  
Lei Yao ◽  
Cecilia Sgadari ◽  
Keizo Furuke ◽  
Eda T. Bloom ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Interleukin-12 (IL-12) inhibits angiogenesis in vivo by inducing interferon-γ (IFN-γ) and other downstream mediators. Here, we report that neutralization of natural killer (NK) cell function with antibodies to either asialo GM1 or NK 1.1 reversed IL-12 inhibition of basic fibroblast growth factor (bFGF)-induced angiogenesis in athymic mice. By immunohistochemistry, those sites where bFGF-induced neovascularization was inhibited by IL-12 displayed accumulation of NK cells and the presence of IP-10–positive cells. Based on expression of the cytolytic mediators perforin and granzyme B, the NK cells were locally activated. Experimental Burkitt lymphomas treated locally with IL-12 displayed tumor tissue necrosis, vascular damage, and NK-cell infiltration surrounding small vessels. After activation in vitro with IL-12, NK cells from nude mice became strongly cytotoxic for primary cultures of syngeneic aortic endothelial cells. Cytotoxicity was neutralized by antibodies to IFN-γ. These results document that NK cells are required mediators of angiogenesis inhibition by IL-12, and provide evidence that NK-cell cytotoxicity of endothelial cells is a potential mechanism by which IL-12 can suppress neovascularization.


Blood ◽  
2015 ◽  
Vol 125 (8) ◽  
pp. 1351-1352 ◽  
Author(s):  
Yasser M. El-Sherbiny ◽  
Gina M. Doody ◽  
Richard J. Kelly ◽  
Anita Hill ◽  
Peter Hillmen ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 690-690 ◽  
Author(s):  
Joseph S. Palumbo ◽  
Kathryn E. Talmage ◽  
Jessica V. Massari ◽  
Christine M. La Jeunesse ◽  
Matthew J. Flick ◽  
...  

Abstract A linkage between hemostatic system components and tumor cell metastatic potential has been well established, but the underlying mechanism(s) by which various circulating and cell-associated coagulation factors and platelets promote tumor cell dissemination remains to be fully defined. One potential mechanism by which tumor cell-associated microthrombi might enhance metastatic potential is by interfering with the cytolytic elimination of tumor cell emboli by natural killer (NK) cells. In order to explore this hypothesis, we studied tumor dissemination in mice lacking either fibrinogen or Gαq, a G protein critical for platelet activation. Comparative studies of experimental lung metastasis in control and Gαq−/− mice showed that loss of platelet activation resulted in a two-orders-of-magnitude decrease in pulmonary metastatic foci formed by either Lewis lung carcinoma or B16 melanoma. The difference in metastatic success was not the result of differences in tumor growth rate, as tumors transplanted into the dorsal subcutis of Gαq−/− and wildtype animals grew at similar rates. Rather, tumor cell fate analyses using radiolabeled tumor cells showed that the survival of tumor cells within the lung was significantly improved in mice that retained platelet activation function relative to Gαq−/− mice with a profound platelet activation defect. In order to examine the potential interplay between platelet activation and natural killer cell function, we compared pulmonary tumor cell survival in cohorts of control and Gαq−/− mice immuno-depleted of NK cells with an anti-asialo GM1 antibody. Remarkably, platelet function was no longer a determinant of metastatic potential in mice lacking NK cells. Given that fibrin(ogen) is also an established determinant of metastatic success we explored whether the influence of this key hemostatic factor on tumor cell dissemination was also mechanistically-coupled to natural killer cell function. We interbred fibrinogen-deficient mice with Gz-Ly49A transgenic mice known to have a constitutive deficit in NK cells. In those cohorts of mice with normal NK cells, we affirmed the earlier finding that fibrinogen deficiency resulted in a significant diminution in metastatic potential. However, consistent with our findings in mice with defective platelet activation, fibrinogen was found to no longer be a determinant of metastatic potential in mice lacking NK cells. These data establish another important link between innate immune surveillance and the hemostatic system. Further, it appears that at least one mechanism by which tumor cell-associated microthrombi increase metastatic potential is by restricting NK cell-mediated tumor cell elimination. Given that NK cell cytotoxicity requires direct contact with any target cell, one attractive model presently being explored is that tumor cell-associated platelets physically block NK cell access to tumor cell emboli.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2066-2066
Author(s):  
Tarun K. Garg ◽  
Jessica I Gann ◽  
Priyangi A Malaviarachchi ◽  
Kate Stone ◽  
Veronica Macleod ◽  
...  

Abstract Introduction The complex makeup of the tumor microenvironment (ME) exerts selective pressure on cancer cells leading to immune escape, and novel immunotherapeutic interventions have emerged from evolving knowledge of the immune system and tumor cells. Natural killer (NK) cells are innate immune cells that exert potent anti-tumor effects. Previously we have reported that ex vivo expansion of NK cells by co-culture PBMCs with K562mbIL15-41BBL can generate large numbers of highly active expanded NK cells (ENKs). These ENKs expand further upon adoptive transfer in vivo both in a murine model and in patients (Garg et al. 2012, Szmania et al. 2015), and have been shown to persist and retain their cytolytic ability. We are currently applying ENK therapy in a Phase II clinical trial at our institute in gene expression profiling-defined high-risk multiple myeloma (MM), a patient population which fares poorly despite the use of novel drugs and autologous stem cell transplantation. A potential obstacle to successful NK cell-based therapies is the suppression of NK cells in the MM bone marrow ME (BM-ME) by immunosuppressive cells, various soluble factors (SF), microRNAs, and exosomes. Exosomes are endosomal-derived, 30-130nm microvesicles present in almost all body fluids. Their number is significantly higher in cancer patients. Tumor-derived exosomes contain a wide range of bioactive molecules, such as microRNA, RNA, DNA and protein, and play a major role in immune escape, promoting tumor progression. Their size, structure, and presence in serum allow them to transport their cargo to distant targets. This study was designed to characterize the potential adverse effects of myeloma-derived exosomes (MEXs) and myeloma-derived SF (MSF) on NK cell function and determine if such inhibition can be overcome by cytokine support. Methods MEXs were isolated from OPM2 myeloma cell line-derived conditioned media (MCM) using the Total Isolation Reagent (Life Technologies, Carlsbad CA). Transmission electron microscopy (TEM), flow cytometry, and western blot (WB) analysis were used for characterization of exosomes. Fresh NK cells (non-activated) and ENKs were incubated with MCM or MEXs and evaluated for their viability and cytolytic ability in standard 4-hour chromium release assays. Flow cytometry was used to evaluate the immunophenotype of these cells, including activation, costimulatory, inhibitory receptors, and adhesion molecules. Results TEM confirmed the presence of exosomes in MCM (size and morphology). Interestingly, OPM2-derived MEXs did not express the exosome-specific marker CD9, but did express CD63, and CD81. Flow cytometry showed that MEXs contain MICA/B, TGFβ, TRAIL-R1, TRAIL-R2, MHC class I, HLA-E, and ICAM3. NK cells exposed to MEXs demonstrated a dose-dependent, significant decrease in specific lysis of the MM cell lines JJN3, OPM2, and U266 in cytotoxicity assays compared to control NK cells (13%-51%, p<0.0005). In addition, a time-dependent decrease in NK cell-mediated lysis was observed in these MM cell lines at 24hours (14%-34%) versus 48hours (30%-48%; p<0.0005). A similar downward trend in the activity of ENKs incubated with MEXs was also noted but to a lesser extent. We hypothesize that highly-activated ENKs are able to partially overcome MEX-mediated inhibition compare to resting NK cells. We also noted a considerable decrease in the cytolytic ability of ENKs incubated with MCM which contains suppressive soluble factors in addition to MEXs (28%-58%, p<0.0005). Further, this suppression in ENK activity was partly rescued by fresh IL2 incubation (18-36%, p<0.01). Many of the activating receptors (NKp46, NKp30, NKp44, NKG2D), costimulatory receptors (2B4, NTB-A, NKp80, DNAM-1), activation markers (CD26, CD69), and adhesion molecules (LFA-1, CD54) were down regulated on the ENK cells incubated with MCM. However, differences were not as significant in these receptors on ENK cells incubated with MEX. Conclusion MEXs and other SF released from myeloma cells are capable of modulating the function and phenotype of NK cells and ENKs. MCM is more immunosuppressive as it contains both MEX and MSF. Cytolytic ability of ENKs could be partially restored by incubation in fresh IL2 medium. Further characterization of MEXs and MCM by proteomics is in progress. (Data will be presented). Disclosures Davies: Takeda: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria. Morgan:Bristol Meyers: Consultancy, Honoraria; Janssen: Research Funding; Univ of AR for Medical Sciences: Employment; Takeda: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. 2286-2294 ◽  
Author(s):  
Don M. Benson ◽  
Courtney E. Bakan ◽  
Anjali Mishra ◽  
Craig C. Hofmeister ◽  
Yvonne Efebera ◽  
...  

Abstract T-cell expression of programmed death receptor-1 (PD-1) down-regulates the immune response against malignancy by interacting with cognate ligands (eg, PD-L1) on tumor cells; however, little is known regarding PD-1 and natural killer (NK) cells. NK cells exert cytotoxicity against multiple myeloma (MM), an effect enhanced through novel therapies. We show that NK cells from MM patients express PD-1 whereas normal NK cells do not and confirm PD-L1 on primary MM cells. Engagement of PD-1 with PD-L1 should down-modulate the NK-cell versus MM effect. We demonstrate that CT-011, a novel anti–PD-1 antibody, enhances human NK-cell function against autologous, primary MM cells, seemingly through effects on NK-cell trafficking, immune complex formation with MM cells, and cytotoxicity specifically toward PD-L1+ MM tumor cells but not normal cells. We show that lenalidomide down-regulates PD-L1 on primary MM cells and may augment CT-011's enhancement of NK-cell function against MM. We demonstrate a role for the PD-1/PD-L1 signaling axis in the NK-cell immune response against MM and a role for CT-011 in enhancing the NK-cell versus MM effect. A phase 2 clinical trial of CT-011 in combination with lenalidomide for patients with MM should be considered.


Blood ◽  
2008 ◽  
Vol 112 (10) ◽  
pp. 4080-4089 ◽  
Author(s):  
Norman Nausch ◽  
Ioanna E. Galani ◽  
Eva Schlecker ◽  
Adelheid Cerwenka

Abstract Myeloid-derived suppressor cells (MDSCs) accumulate in cancer patients and tumor-bearing mice and potently suppress T-cell activation. In this study, we investigated whether MDSCs regu-late natural killer (NK)–cell function. We discovered that mononuclear Gr-1+CD11b+F4/80+ MDSCs isolated from RMA-S tumor-bearing mice do not suppress, but activate NK cells to produce high amounts of IFN-γ. Gr-1+CD11b+F4/80+ MDSCs isolated from tumor-bearing mice, but not myeloid cells from naive mice, expressed the ligand for the activating receptor NKG2D, RAE-1. NK-cell activation by MDSCs depended partially on the interaction of NKG2D on NK cells with RAE-1 on MDSCs. NK cells eliminated Gr-1+CD11b+F4/80+ MDSCs in vitro and upon adoptive transfer in vivo. Finally, depletion of Gr-1+ cells that comprise MDSCs confirmed their protective role against the NK-sensitive RMA-S lymphoma in vivo. Our study reveals that MDSCs do not suppress all aspects of antitumor immune responses and defines a novel, unexpected activating role of MDSCs on NK cells. Thus, our results have great impact on the design of immune therapies against cancer aiming at the manipulation of MDSCs.


Sign in / Sign up

Export Citation Format

Share Document