scholarly journals BIMG-05. TO BE OR NOT TO BE GLYCOLYTIC: DEUTERATED GLUCOSE-BASED ASSESSMENT OF THE WARBURG EFFECT ALLOWS NON-INVASIVE IMAGING OF TUMOR BURDEN AND TREATMENT RESPONSE IN MUTANT IDH GLIOMAS IN VIVO

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i1-i2
Author(s):  
Celine Taglang ◽  
Georgios Batsios ◽  
Meryssa Tran ◽  
Anne Marie Gillepsie ◽  
Hema Artee Luchman ◽  
...  

Abstract The Warburg effect, characterized by elevated glucose uptake and flux to lactate, is a metabolic hallmark of cancer. Recent studies have identified deuterium 2H-magnetic resonance spectroscopy (MRS) using 6,6’-2H-glucose as a novel method of imaging the Warburg effect in high-grade primary glioblastomas (GBMs). However, its utility for imaging low-grade gliomas has not been tested. The goal of this study was to determine whether 6,6’-2H-glucose can be used for imaging tumor burden and treatment response in mutant isocitrate dehydrogenase (IDHmut) low-grade gliomas in vivo. We examined mice bearing orthotopic tumors of the patient-derived BT257 astrocytoma model. 1H-MRS, providing a readout of steady-state metabolite levels, confirmed the presence of 2-hydroxyglutarate, the product of IDHmut, in BT257 tumor tissue but not normal brain. Previous studies comparing IDHmut gliomas with GBMs suggest that IDHmut gliomas undergo lactate dehydrogenase silencing, potentially leading to a non-glycolytic phenotype. Nevertheless, our results indicated that, compared to normal brain, glucose uptake and concomitant flux to lactate were significantly higher in BT257 tumor tissue. Importantly, 6,6’-2H-glucose metabolism to lactate was observed in BT257 tumor-bearing mice, but not tumor-free mice. Furthermore, imaging studies confirmed spatial localization of lactate production to the tumor vs. contralateral normal brain. We then examined the ability of 6,6’-2H-glucose to assess treatment response. Poly-(adenosine 5′-diphosphate-ribose) polymerase inhibitors (PARPi) inhibit IDHmut glioma growth and are in clinical trials for IDHmut glioma patients. Treatment with the PARPi niraparib reduced 6,6’-2H-glucose flux to lactate in BT257 tumor-bearing mice. Importantly, this reduction was observed at early time-points when no difference in tumor volume could be detected using anatomical imaging, pointing to the ability of 6,6’-2H-glucose to assess pseudoprogression. Collectively, our results suggest that IDHmut gliomas display a glycolytic phenotype amenable to non-invasive 2H-MRS-based imaging of tumor burden and treatment response.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi42-vi42
Author(s):  
Pavithra Viswanath ◽  
Georgios Batsios ◽  
Anne Marie Gillespie ◽  
Russell O Pieper ◽  
Sabrina Ronen

Abstract Telomerase reverse transcriptase (TERT) expression is a hallmark of cancer, including in primary glioblastomas and low-grade oligodendrogliomas. Since TERT is essential for glioma proliferation and is an attractive therapeutic target, metabolic imaging of TERT status can inform on tumor progression and response to therapy. To that end, the goal of this study was to identify non-invasive, translational, hyperpolarized 13C-magnetic resonance spectroscopy-detectable metabolic imaging biomarkers of TERT in low-grade oligodendrogliomas. Unbiased metabolomic analysis of immortalized normal human astrocytes without (NHAcontrol) and with TERT (NHAtert) indicated that TERT induced unique metabolic reprogramming. Notably, TERT increased NADPH and NADH levels. Glucose flux through the pentose phosphate pathway (PPP) is a major producer of NADPH. Non-invasive imaging of PPP flux using hyperpolarized [U-13C,U-2H]-glucose indicated that production of the PPP metabolite 6-phosphogluconate (6-PG) was elevated in NHAtert cells relative to NHAcontrol. Importantly, hyperpolarized [U-13C,U-2H]-glucose flux to 6-PG clearly differentiated tumor from normal brain in orthotopic NHAtert tumor xenografts. Next, we exploited the observation that TERT expression increased NADH, which is essential for the metabolism of hyperpolarized [1-13C]-alanine to lactate. Lactate production from hyperpolarized [1-13C]-alanine was higher in NHAtert cells relative to NHAcontrol. Importantly, hyperpolarized [1-13C]-alanine imaging in orthotopic NHAtert tumors revealed pronounced differences in lactate production between tumor tissue and normal brain. Mechanistically, TERT increased expression of glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme for 6-PG and NADPH production, and of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme for NADH biosynthesis. Silencing TERT reversed G6PDH and NAMPT expression and normalized hyperpolarized [U-13C,U-2H]-glucose and [1-13C]-alanine metabolism, validating our imaging biomarkers. Finally, hyperpolarized [U-13C,U-2H]-glucose and [1-13C]-alanine could monitor TERT status in the clinically relevant, patient-derived BT54 oligodendroglioma model. In summary, we demonstrate, for the first time, non-invasive in vivo imaging of TERT status in gliomas that can enable longitudinal analysis of tumor burden and treatment response in the clinic.


2011 ◽  
Vol 208 (2) ◽  
pp. 313-326 ◽  
Author(s):  
Amparo Wolf ◽  
Sameer Agnihotri ◽  
Johann Micallef ◽  
Joydeep Mukherjee ◽  
Nesrin Sabha ◽  
...  

Proliferating embryonic and cancer cells preferentially use aerobic glycolysis to support growth, a metabolic alteration commonly referred to as the “Warburg effect.” Here, we show that the glycolytic enzyme hexokinase 2 (HK2) is crucial for the Warburg effect in human glioblastoma multiforme (GBM), the most common malignant brain tumor. In contrast to normal brain and low-grade gliomas, which express predominantly HK1, GBMs show increased HK2 expression. HK2 expression correlates with worse overall survival of GBM patients. Depletion of HK2, but neither HK1 nor pyruvate kinase M2, in GBM cells restored oxidative glucose metabolism and increased sensitivity to cell death inducers such as radiation and temozolomide. Intracranial xenografts of HK2-depleted GBM cells showed decreased proliferation and angiogenesis, but increased invasion, as well as diminished expression of hypoxia inducible factor 1α and vascular endothelial growth factor. In contrast, exogenous HK2 expression in GBM cells led to increased proliferation, therapeutic resistance, and intracranial growth. Growth was dependent on both glucose phosphorylation and mitochondrial translocation mediated by AKT signaling, which is often aberrantly activated in GBMs. Collectively, these findings suggest that therapeutic strategies to modulate the Warburg effect, such as targeting of HK2, may interfere with growth and therapeutic sensitivity of some GBMs.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i5-i5
Author(s):  
Zachary Corbin ◽  
Robert Fulbright ◽  
Douglas Rothman ◽  
Robin de Graaf ◽  
Henk De Feyter

Abstract Deuterium Metabolic Imaging (DMI) combines 3D deuterium (2H) magnetic resonance spectroscopic imaging (MRSI) with administration of a 2H-labeled substrate to map uptake and metabolism of the substrate. DMI has been implemented on a 4 Tesla clinical research MRI scanner, and on an 11.7 Tesla preclinical MRI scanner, and has been used with 2H-labeled glucose, acetate and choline. DMI data are presented as color maps of concentration of the 2H-labeled substrate and its metabolites, overlaid on anatomical MR images. In rat and mouse models of glioblastoma, DMI data acquired at 5 to 8 uL resolution following intravenous 2H-glucose infusion clearly showed the Warburg effect in the tumor lesions. The Warburg effect is indicated by the ratio of 2H-labeled lactate/glutamate+glutamine (Glx). High levels of 2H-labeled lactate and low levels of 2H-labeled Glx are the result of a high rate of glycolysis and low rate of oxidative glucose metabolism. Because DMI detects both glucose and its downstream metabolism, the technique does not suffer from low image contrast with normal brain, as is the case with FDG-PET that detects glucose uptake only. For clinical research studies patients orally consumed 0.75g/kg of 2H-glucose dissolved in water. The observations made in the animal models were confirmed in several patients with recurrent GBM, showing hotspots in the lac/Glx maps (8 mL resolution), coinciding with the area of the tumor lesion. In patients with meningioma, no Warburg effect was detected using DMI. Furthermore, DMI data acquired in a patient with GBM one week after finishing 30 days of radiation therapy, also showed no high levels of 2H-labeled lactate in the lesion. These data indicate that the presence of the Warburg effect could correlate with tumor grade and/or aggressiveness, and that DMI of glucose metabolism could potentially be a biomarker of therapy effect.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi140-vi140
Author(s):  
Céline Taglang ◽  
Georgios Batsios ◽  
Joydeep Mukherjee ◽  
Meryssa Tran ◽  
Anne Marie Gillespie ◽  
...  

Abstract Glioma patient management relies heavily on magnetic resonance imaging (MRI). However, MRI is often inadequate for assessment of tumor burden and pseudoprogression. Non-invasive methods that report on molecular pathways such as telomere maintenance that drive tumor proliferation are needed. Among brain tumors, low-grade astrocytomas (LGAs) use the alternative lengthening of telomeres (ALT) pathway for telomere maintenance. The goal of this study was to identify ALT-linked metabolic alterations that can be exploited for non-invasive magnetic resonance spectroscopy (MRS)-based imaging of LGAs. We examined the patient-derived BT257 model and compared neurospheres that are ALT-dependent (BT257 ALT+) with those in which the ALT pathway has been silenced (BT257 ALT-). Our studies suggest that expression and activity of the rate-limiting glycolytic enzyme phosphofructokinase-1 are significantly higher in BT257 ALT+ neurospheres relative to ALT-, an effect that is associated with elevated glucose flux to lactate. Studies indicate that poly(ADP-ribose) polymerase inhibitors such as niraparib selectively induce telomeric fusion and cell death in ALT-dependent cells. We find that the telomeric fusion-mediated cytotoxicity of niraparib is associated with significantly reduced glycolytic flux in BT257 ALT+ neurospheres. We then examined whether 2H-MRS using [6,6’-2H]-glucose, which is a clinically translatable method of imaging glycolytic flux, can be used to monitor the ALT pathway in vivo. [6,6’-2H]-glucose flux to lactate is elevated in tumor relative to normal brain in mice bearing orthotopic BT257 tumors. Importantly, following treatment of BT257 tumor-bearing mice with niraparib, lactate production from [6,6’-2H]-glucose is significantly reduced at early timepoints when alterations in tumor volume cannot be observed by MRI, pointing to the ability of [6,6’-2H]-glucose to report on pseudoprogression in vivo. Collectively, our studies mechanistically link the ALT pathway with elevated glycolytic flux via phosphofructokinase-1 and identify deuterium metabolic imaging as a novel, non-invasive method of imaging tumor burden and treatment response in LGAs in vivo.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii214-ii214
Author(s):  
Pavithra Viswanath ◽  
Georgios Batsios ◽  
Anne Marie Gillespie ◽  
Hema Artee Luchman ◽  
Joseph Costello ◽  
...  

Abstract Telomeres are nucleoprotein structures at chromosomal ends that shorten with cell division and constitute a natural barrier to proliferation. In order to proliferate indefinitely, all tumors require a telomere maintenance mechanism (TMM). Telomerase reverse transcriptase (TERT) expression is the TMM in most tumors, including low-grade oligodendrogliomas (LGOGs). In contrast, low-grade astrocytomas (LGAs) use the alternative lengthening of telomeres (ALT) pathway as their TMM. As molecular hallmarks of tumor proliferation, TMMs are attractive tumor biomarkers and therapeutic targets. Non-invasive imaging of TMM status will, therefore, allow assessment of tumor proliferation and treatment response. However, translational methods of imaging TMM status are lacking. Here, we show that TERT expression and the ALT pathway are associated with unique magnetic resonance spectroscopy (MRS)-detectable metabolic reprogramming in LGOGs and LGAs respectively. In genetically-engineered and patient-derived LGOG models, TERT expression is linked to elevated 1H-MRS-detectable NAD(P)/H, glutathione, aspartate and AXP. In contrast, the ALT pathway in LGAs is associated with higher α-ketoglutarate, glutamate, alanine and AXP. Importantly, elevated flux of hyperpolarized [1-13C]-alanine to pyruvate, which depends on α-ketoglutarate, is a non-invasive in vivo imaging biomarker of the ALT pathway in LGAs while elevated flux of hyperpolarized [1-13C]-alanine to lactate, which depends on NADH, is an imaging biomarker of TERT expression in LGOGs. Mechanistically, the ALT pathway in LGAs is linked to higher glutaminase (GLS), a key enzyme for α-ketoglutarate biosynthesis while TERT expression in LGOGs is associated with elevated nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme for NADH biosynthesis. Notably, TERT expression and the ALT pathway are linked to MRS-detectable metabolic reprogramming in LGOG and LGA patient biopsies, emphasizing the clinical validity of our observations. Collectively, we have identified unique metabolic signatures of TMM status that integrate critical oncogenic information with noninvasive imaging modalities that can improve diagnosis and treatment response monitoring for LGOG and LGA patients.


2020 ◽  
Author(s):  
Lei Liu ◽  
Li Chai ◽  
Jingjing Ran ◽  
Ying Yang ◽  
Li Zhang

Abstract Brain-specific angiogenesis inhibitor 1 (BAI1) is an important tumor suppressor in multiple cancers. However, the mechanisms behind its anti-tumor activity, particularly the relationship between BAI1 and metabolic aberrant of a tumor, remained unveiled. This study aimed to investigate whether BAI1 could inhibit biological functions in lung cancer A549 cells and the critical regulating molecules that induce metabolic reprogramming. Immunohistochemistry staining was performed to analyze whether variations in the expression of BAI1 in tumor tissues contributes to poor prognosis of lung cancer. Overexpressed BAI1 (BAI1-OE-A549) and control (Vector-NC-A549) were generated by lentiviral transfection. Biological function assays (proliferation, apoptosis, colony formation, invasion and in vivo metastasis), as well as metabolic reprogramming (by the Warburg effect and the glycolytic rate), were performed in both groups. Our results indicated that lower levels of BAI1 contributed to poor prognosis of lung cancer patients. Furthermore, overexpressed of BAI1 dramatically inhibited proliferation, migration, invasion, colony formation and in vivo metastasis of A549 cells. The Warburg effect and the Seahorse assay revealed that BAI1-OE induced metabolism reprogramming by inhibiting the Warburg effect and glycolysis. Further exploration indicated that BAI1 induced metabolic reprogramming by upregulating stearoyl-CoA desaturase 1 (SCD1) and inhibited 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Our study revealed a novel mechanism through which BAI1 acted as tumor suppressor by inducing metabolic reprogramming via the SCD1 and HMGCR module.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i2-i2
Author(s):  
Georgios Batsios ◽  
Celine Taglang ◽  
Meryssa Tran ◽  
Anne Marie Gillespie ◽  
Joseph Costello ◽  
...  

Abstract Telomere shortening constitutes a natural barrier to uncontrolled proliferation and all tumors must find a mechanism of maintaining telomere length. Most human tumors, including high-grade primary glioblastomas (GBMs) and low-grade oligodendrogliomas (LGOGs) achieve telomere maintenance via reactivation of the expression of telomerase reverse transcriptase (TERT), which is silenced in normal somatic cells. TERT expression is, therefore, a driver of tumor proliferation and, due to this essential role, TERT is also a therapeutic target. However, non-invasive methods of imaging TERT are lacking. The goal of this study was to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers of TERT expression that will enable non-invasive visualization of tumor burden in LGOGs and GBMs. First, we silenced TERT expression by RNA interference in patient-derived LGOG (SF10417, BT88) and GBM (GS2) models. Our results linked TERT silencing to significant reductions in steady-state levels of NADH in all models. NADH is essential for the conversion of pyruvate to lactate, suggesting that measuring pyruvate flux to lactate could be useful for imaging TERT status. Recently, deuterium (2H)-MRS has emerged as a novel, clinically translatable method of monitoring metabolic fluxes in vivo. However, to date, studies have solely examined 2H-glucose and the use of [U-2H]pyruvate for non-invasive 2H-MRS has not been tested. Following intravenous injection of a bolus of [U-2H]pyruvate, lactate production was higher in mice bearing orthotopic LGOG (BT88 and SF10417) and GBM (GS2) tumor xenografts relative to tumor-free mice, suggesting that [U-2H]pyruvate has the potential to monitor TERT expression in vivo. In summary, our study, for the first time, shows the feasibility and utility of [U-2H]pyruvate for in vivo imaging. Importantly, since 2H-MRS can be implemented on clinical scanners, our results provide a novel, non-invasive method of integrating information regarding a fundamental cancer hallmark, i.e. TERT, into glioma patient management.


2021 ◽  
Author(s):  
Shonagh Russell ◽  
Liping Xu ◽  
Yoonseok Kam ◽  
Dominique Abrahams ◽  
Bryce Ordway ◽  
...  

Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the “Warburg Effect”. It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. To test this hypothesis, we stably transfected lowly-glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton exporting systems: either PMA1 (yeast H+-ATPase) or CAIX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. Therefore, cancer cells with increased H+ export increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards a Warburg phenotype.


2021 ◽  
Vol 12 ◽  
Author(s):  
Takahiko Nakagawa ◽  
Laura G. Sanchez-Lozada ◽  
Ana Andres-Hernando ◽  
Hideto Kojima ◽  
Masato Kasahara ◽  
...  

Chronic low-grade inflammation underlies the pathogenesis of non-communicable diseases, including chronic kidney diseases (CKD). Inflammation is a biologically active process accompanied with biochemical changes involving energy, amino acid, lipid and nucleotides. Recently, glycolysis has been observed to be increased in several inflammatory disorders, including several types of kidney disease. However, the factors initiating glycolysis remains unclear. Added sugars containing fructose are present in nearly 70 percent of processed foods and have been implicated in the etiology of many non-communicable diseases. In the kidney, fructose is transported into the proximal tubules via several transporters to mediate pathophysiological processes. Fructose can be generated in the kidney during glucose reabsorption (such as in diabetes) as well as from intra-renal hypoxia that occurs in CKD. Fructose metabolism also provides biosynthetic precursors for inflammation by switching the intracellular metabolic profile from mitochondrial oxidative phosphorylation to glycolysis despite the availability of oxygen, which is similar to the Warburg effect in cancer. Importantly, uric acid, a byproduct of fructose metabolism, likely plays a key role in favoring glycolysis by stimulating inflammation and suppressing aconitase in the tricarboxylic acid cycle. A consequent accumulation of glycolytic intermediates connects to the production of biosynthetic precursors, proteins, lipids, and nucleic acids, to meet the increased energy demand for the local inflammation. Here, we discuss the possibility of fructose and uric acid may mediate a metabolic switch toward glycolysis in CKD. We also suggest that sodium-glucose cotransporter 2 (SGLT2) inhibitors may slow the progression of CKD by reducing intrarenal glucose, and subsequently fructose levels.


Sign in / Sign up

Export Citation Format

Share Document