scholarly journals FSMP-08. TARGETING PYRIMIDINE SYNTHESIS ACCENTUATES MOLECULAR THERAPY RESPONSE IN GLIOBLASTOMA STEM CELLS

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i17-i17
Author(s):  
Kailin Yang ◽  
Xiuxing Wang ◽  
Qiulian Wu ◽  
Leo Kim ◽  
Andrew Morton ◽  
...  

Abstract Glioblastoma stem cells (GSCs) reprogram glucose metabolism by hijacking high-affinity glucose uptake to survive in a nutritionally dynamic microenvironment. Here, we trace metabolic aberrations in GSCs to link core genetic mutations in glioblastoma to dependency on de novo pyrimidine synthesis. Targeting the pyrimidine synthetic rate-limiting step enzyme carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase (CAD) or the critical downstream enzyme dihydroorotate dehydrogenase (DHODH) inhibited GSC survival, self-renewal, and in vivo tumor initiation through the depletion of the pyrimidine nucleotide supply in rodent models. Mutations in EGFR or PTEN generated distinct CAD phosphorylation patterns to activate carbon influx through pyrimidine synthesis. Simultaneous abrogation of tumor-specific driver mutations and DHODH activity with clinically approved inhibitors demonstrated sustained inhibition of metabolic activity of pyrimidine synthesis and GSC tumorigenic capacity in vitro. Higher expression of pyrimidine synthesis genes portends poor prognosis of patients with glioblastoma. Collectively, our results demonstrate a therapeutic approach of precision medicine through targeting the nexus between driver mutations and metabolic reprogramming in cancer stem cells.

2019 ◽  
Vol 11 (504) ◽  
pp. eaau4972 ◽  
Author(s):  
Xiuxing Wang ◽  
Kailin Yang ◽  
Qiulian Wu ◽  
Leo J. Y. Kim ◽  
Andrew R. Morton ◽  
...  

Glioblastoma stem cells (GSCs) reprogram glucose metabolism by hijacking high-affinity glucose uptake to survive in a nutritionally dynamic microenvironment. Here, we trace metabolic aberrations in GSCs to link core genetic mutations in glioblastoma to dependency on de novo pyrimidine synthesis. Targeting the pyrimidine synthetic rate-limiting step enzyme carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase (CAD) or the critical downstream enzyme dihydroorotate dehydrogenase (DHODH) inhibited GSC survival, self-renewal, and in vivo tumor initiation through the depletion of the pyrimidine nucleotide supply in rodent models. Mutations in EGFR or PTEN generated distinct CAD phosphorylation patterns to activate carbon influx through pyrimidine synthesis. Simultaneous abrogation of tumor-specific driver mutations and DHODH activity with clinically approved inhibitors demonstrated sustained inhibition of metabolic activity of pyrimidine synthesis and GSC tumorigenic capacity in vitro. Higher expression of pyrimidine synthesis genes portends poor prognosis of patients with glioblastoma. Collectively, our results demonstrate a therapeutic approach of precision medicine through targeting the nexus between driver mutations and metabolic reprogramming in cancer stem cells.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi238-vi238
Author(s):  
Kailin Yang ◽  
Xiuxing Wang ◽  
Qiulian Wu ◽  
Leo Kim ◽  
Andrew Morton ◽  
...  

Abstract Glioblastoma stem cells (GSCs) reprogram glucose metabolism by hijacking high-affinity glucose uptake to survive in a nutritionally dynamic microenvironment. Here, we trace metabolic aberrations in GSCs to link core genetic mutations in glioblastoma to dependency on de novo pyrimidine synthesis. Targeting the pyrimidine synthetic rate-limiting step enzyme carbamoyl-phosphate synthetase 2, aspartate transcarbamyolase, dihydroorotase (CAD) or the critical downstream enzyme, dihydroorotate dehydrogenase (DHODH) inhibited GSC survival, self-renewal, and in vivo tumor initiation through the depletion of the pyrimidine nucleotide supply in rodent models. Mutations in EGFR or PTEN generated distinct CAD phosphorylation patterns to activate carbon influx through pyrimidine synthesis. Simultaneous abrogation of tumor-specific driver mutations and DHODH activity with clinically approved inhibitors demonstrated sustained inhibition of metabolic activity of pyrimidine synthesis and GSC tumorigenic capacity. Higher expression of pyrimidine synthesis genes portend poor prognosis of glioblastoma patients. Collectively, our results demonstrate a therapeutic approach of precision medicine through targeting the nexus between driver mutations and metabolic reprogramming in cancer stem cells.


1989 ◽  
Vol 261 (3) ◽  
pp. 979-983 ◽  
Author(s):  
Z Szondy ◽  
E A Newsholme

The maximum catalytic activities of carbamoyl-phosphate synthase II, a limiting enzyme for pyrimidine nucleotide synthesis, are very much less than those of glutaminase, a limiting enzyme for glutamine utilization, in lymphocytes and macrophages; and the flux through the pathway for pyrimidine formation de novo is only about 0.4% of the rate of glutamine utilization by lymphocytes. The Km of synthase II for glutamine is about 16 microM and the concentration of glutamine necessary to stimulate lymphocyte proliferation half-maximally is about 21 microM. This agreement suggests that the importance of glutamine for these cells is provision of nitrogen for biosynthesis of pyrimidine nucleotides (and probably purine nucleotides). However, the glutamine concentration necessary for half-maximal stimulation of glutamine utilization (glutaminolysis) by the lymphocytes is 2.5 mM. The fact that the rate of glutamine utilization by lymphocytes is markedly in excess of the rate of the pathway for pyrimidine nucleotide synthesis de novo and that the Km and ‘half-maximal concentration’ values are so different, suggests that the glutaminolytic pathway is independent of the use of glutamine nitrogen for pyrimidine synthesis.


2021 ◽  
Author(s):  
Hans-Georg Sprenger ◽  
Thomas MacVicar ◽  
Amir Bahat ◽  
Kai Uwe Fiedler ◽  
Steffen Hermans ◽  
...  

AbstractCytosolic mitochondrial DNA (mtDNA) elicits a type I interferon response, but signals triggering the release of mtDNA from mitochondria remain enigmatic. Here, we show that mtDNA-dependent immune signalling via the cyclic GMP–AMP synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS–STING–TBK1) pathway is under metabolic control and is induced by cellular pyrimidine deficiency. The mitochondrial protease YME1L preserves pyrimidine pools by supporting de novo nucleotide synthesis and by proteolysis of the pyrimidine nucleotide carrier SLC25A33. Deficiency of YME1L causes inflammation in mouse retinas and in cultured cells. It drives the release of mtDNA and a cGAS–STING–TBK1-dependent inflammatory response, which requires SLC25A33 and is suppressed upon replenishment of cellular pyrimidine pools. Overexpression of SLC25A33 is sufficient to induce immune signalling by mtDNA. Similarly, depletion of cytosolic nucleotides upon inhibition of de novo pyrimidine synthesis triggers mtDNA-dependent immune responses in wild-type cells. Our results thus identify mtDNA release and innate immune signalling as a metabolic response to cellular pyrimidine deficiencies.


1987 ◽  
Vol 7 (5) ◽  
pp. 1961-1966
Author(s):  
G N Rao ◽  
E S Buford ◽  
J N Davidson

CAD codes for a trifunctional protein involved in the catalysis of the first three enzymatic activities in the de novo pyrimidine biosynthetic pathway, namely, carbamoyl-phosphate synthetase II (EC 6.3.5.5), aspartate transcarbamylase (EC 2.1.3.2), and dihydroorotase (EC 3.5.2.3). CAD regulation was studied in the human promyelocyte leukemic line HL-60 as it differentiated into monocytic or granulocytic lineages after induction by 12-O-tetradecanoylphorbol-13-acetate or trans-retinoic acid and dibutyryl cyclic AMP, respectively. Within 12 h of induction of HL-60 cells with either inducer, total cellular levels of CAD RNA essentially disappeared. On the other hand, no apparent decreases in beta-actin RNA levels were seen even 48 h after HL-60 cells were induced, as compared with untreated cells. With nuclear runoff assays, it was clearly shown that the inactivation of CAD gene expression during the induction of HL-60 cells with either inducer was at the transcriptional level. The nuclear runoff experiments also demonstrated that the CAD gene expression was shut down in less than 4 h after induction, well before morphological changes were observed in these cells. At the enzymatic level, the activity of aspartate transcarbamylase, one of the three enzymes encoded by the CAD gene, decreased by about half within 24 h of induction, suggesting a CAD protein half-life of 24 h in differentiating HL-60 cells. Nevertheless, this means that significant levels of aspartate transcarbamylase activity remained even after the cells have stopped proliferating. From the RNA data, it is clear that CAD gene expression is rapidly turned off as promyelocytes begin to terminally differentiate into macrophages and granulocytes. We suspect that the inactivation of the CAD gene in induced HL-60 cells is a consequence of the differentiating cells leaving the cell cycle and becoming nonproliferating.


1982 ◽  
Vol 206 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Dietrich O. R. Keppler ◽  
Christa Schulz-Holstege ◽  
Joachim Fauler ◽  
Karl A. Reiffen ◽  
Friedhelm Schneider

d-Galactosone (d-lyxo-2-hexosulose) is phosphorylated and metabolized to the uridine diphosphate derivative in AS-30D hepatoma cells and rat liver. These reactions were catalysed in vitro by galactokinase and hexose-1-phosphate uridylyltransferase. Nucleotide analyses by high-performance liquid chromatography and enzymic assays revealed that this galactose analogue interferes with cellular pyrimidine nucleotide metabolism leading to a deficiency of UTP. [14C]Uridine labelling of hepatoma cells indicated a division of [14C]uridylate from UTP into UDP-galactosone; the latter was formed at a rate of more than 1.7mmol×h−1×(kg AS-30D or liver wet wt.)−1. As a consequence of UTP deficiency, d-galactosone (1mmol/1 or 1mmol/kg body wt.) strongly enhanced the rate of pyrimidine synthesis de novo as evidenced by incorporation of 14CO2 into uridylate and by an expansion of the uridylate pool. This resulted in a doubling of the total acid-soluble uridylate pool within 70min in the hepatoma cells and within 110min in rat liver. Combined treatment of hepatoma cells with d-galactosone and N-(phosphonoacetyl)-l-aspartate, an inhibitor of aspartate carbamoyltransferase, prevented the expansion of the uridylate pool and led to a synergistic reduction of UTP to 10% of the content in control cells. Hepatic UTP deficiency was selective with respect to other nucleotide 5′-triphosphates but was associated with reduced contents of UDP-glucose, UDP-glucuronate, and UDP-N-acetylhexosamines. Isolation of the UDP derivative of d-galactosone revealed an extremely alkali-labile UDP-sugar, probably an isomerization product of UDP-galactosone, that was degraded by elimination of UDP with a half-life of 45min at pH7.5 and 37°C. The instability of UDP-galactosone may contribute in vivo to limit the time period of severe uridine phosphate deficiency in addition to the compensatory role of pyrimidine synthesis de novo. During the initial time period, however, d-galactosone is effective as a powerful uridylate-trapping sugar analogue.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 473 ◽  
Author(s):  
Mei-Ling Cheng ◽  
Kun-Yi Chien ◽  
Chien-Hsueh Lai ◽  
Guan-Jie Li ◽  
Jui-Fen Lin ◽  
...  

Enterovirus 71 (EV71) infection is an endemic disease in Southeast Asia and China. We have previously shown that EV71 virus causes functional changes in mitochondria. It is speculative whether EV71 virus alters the host cell metabolism to its own benefit. Using a metabolomics approach, we demonstrate that EV71-infected Vero cells had significant changes in metabolism. Glutathione and its related metabolites, and several amino acids, such as glutamate and aspartate, changed significantly with the infectious dose of virus. Other pathways, including glycolysis and tricarboxylic acid cycle, were also altered. A change in glutamine/glutamate metabolism is critical to the viral infection. The presence of glutamine in culture medium was associated with an increase in viral replication. Dimethyl α-ketoglutarate treatment partially mimicked the effect of glutamine supplementation. In addition, the immunoblot analysis revealed that the expression of glutamate dehydrogenase (GDH) and trifunctional carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) increased during infection. Knockdown of expression of glutaminase (GLS), GDH and CAD drastically reduced the cytopathic effect (CPE) and viral replication. Furthermore, we found that CAD bound VP1 to promote the de novo pyrimidine synthesis. Our findings suggest that virus may induce metabolic reprogramming of host cells to promote its replication through interactions between viral and host cell proteins.


Author(s):  
K. Yang ◽  
X. Wang ◽  
L.J.Y. Kim ◽  
S.C. Mack ◽  
S. Bao ◽  
...  

2021 ◽  
Author(s):  
Leo Bellin ◽  
Michael Melzer ◽  
Alexander Hilo ◽  
Diana Laura Garza Amaya ◽  
Isabel Keller ◽  
...  

ABSTRACTDe novo synthesis of pyrimidines is an essential and highly conserved pathway in all organisms. A peculiarity in plants is the localization of the first committed step, catalyzed by aspartate transcarbamoylase (ATC), in chloroplasts. By contrast, the third step in the pathway is catalyzed by dihydroorotate dehydrogenase (DHODH) localized in mitochondria in eukaryotes, including plants. To unravel pathway- and organelle specific functions, we analyzed knock-down mutants in ATC and DHODH in detail. ATC knock-downs were most severely affected, exhibiting low levels of pyrimidine metabolites, a low energy state, reduced photosynthetic capacity and accumulated reactive oxygen species (ROS). Furthermore, we observed altered leaf morphology and chloroplast ultrastructure in the mutants. Although less affected, DHODH knock-down mutants showed impaired seed germination and altered mitochondrial ultrastructure. Our results point to an integration of de novo pyrimidine synthesis and cellular energy states via photosynthesis and mitochondrial respiration. These findings highlight the likelihood of further regulatory roles for ATC and DHODH in pathways located in the corresponding organelles.ONE-SENTENCE SUMMARYImpaired pyrimidine nucleotide synthesis results in a low energy state, affecting photosynthesis and organellar ultrastructure, thus leading to reduced growth, reproduction, and seed yield


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i12-i13
Author(s):  
Diana D Shi ◽  
Adam C Wang ◽  
Michael M Levitt ◽  
Jennifer E Endress ◽  
Min Xu ◽  
...  

Abstract 70–90% of lower-grade gliomas and secondary glioblastomas harbor gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1), causing overproduction of the oncometabolite (R)-2-hydroxyglutarate [(R)-2HG]. Although inhibitors of mutant IDH enzymes are effective in other cancers, including leukemia, they have shown guarded efficacy in preclinical and clinical brain tumor studies, thus underscoring the need to identify additional therapeutic targets in IDH mutant glioma. We sought to identify tumor-specific metabolic vulnerabilities induced by IDH1 mutations that could be exploited therapeutically. To uncover such vulnerabilities, we conducted a chemical synthetic lethality screen using isogenic IDH1 mutant and IDH1 wild-type (WT) glioma cell lines and a novel metabolic inhibitor screening platform. We discovered that IDH1 mutant cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). This vulnerability is specific because inhibitors of purine nucleotide metabolism did not score in our screen. We validated that the cytotoxicity of pyrimidine synthesis inhibitors is on-target and showed that IDH1 mutant patient-derived glioma stem-like cell lines are also hyperdependent on de novo pyrimidine nucleotide synthesis compared to IDH1 WT lines. To test pyrimidine synthesis dependence of IDH1 mutant gliomas in vivo, we used a brain-penetrent DHODH inhibitor currently undergoing evaluation in leukemia patients, BAY 2402234. We found that BAY 2402234 displays monotherapy activity against gliomas in an orthotopic xenograft model of IDH1 mutant glioma, with an effect size that compared favorably with radiotherapy. We also developed novel genetically engineered and allograft mouse models of mutant IDH1-driven anaplastic astrocytoma and showed that BAY 2402234 blocked growth of orthotopic astrocytoma allografts. Our findings bolster rationale to target DHODH in glioma, highlight BAY 2402234 as a clinical-stage drug that can be used to inhibit DHODH in brain tumors, and establish IDH1 mutations as predictive biomarkers of DHODH inhibitor efficacy.


Sign in / Sign up

Export Citation Format

Share Document