scholarly journals OTME-17. Single cell characterization of the immune microenvironment of melanoma brain and leptomeningeal metastases

2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii17-ii17
Author(s):  
Inna Smalley ◽  
Zhihua Chen ◽  
Manali Phadke ◽  
Jiannong Li ◽  
Xiaoqing Yu ◽  
...  

Abstract Melanoma brain metastases (MBM) and leptomeningeal metastases (LMM) are two manifestations of melanoma dissemination to the CNS with vastly different survival outcomes. Analysis of single cell RNA-Seq data from 43 clinical specimens has uncovered a distinct, immune-suppressed T cell landscape in the LMM microenvironment that is distinct to those of the brain and skin metastases. An LMM patient with an extraordinarily long survival and documented response to therapy demonstrated an immune repertoire that was distinct from those of typical poor survivors and more similar to CSF from non-LMM donors. Analysis of serial specimens over the course of therapy demonstrated reductions in melanoma cells and macrophages, coupled with increased levels of T cells and dendritic cells in the CSF of the extraordinary responder, whereas poor survivors showed no improvement in T cell responses. In MBM patients, targeted therapy and immunotherapy was associated with increased immune infiltrate, with similar T cell transcriptional diversity noted between skin metastases and MBM - suggestive of immune cell trafficking into the brain. Treatment with targeted therapy was associated with an enrichment of CD8 T cells. Immunotherapy was associated with a more diverse lymphocyte landscape and higher numbers of antibody-producing cells. These findings were confirmed by multiplexed staining of patient specimens and using an immune-competent mouse model of MBM. Correlation analysis across the entire immune landscape identified the presence of a rare, novel population of dendritic cells (DC3s) to be correlated with increased overall survival, regardless of disease site/treatment. The presence of DC3s positively regulated the immune environment of both patient samples and preclinical melanoma models through modulation of activated T cells and MHC expression in the tumor. Our study provides the first comprehensive atlas of two distinct sites of melanoma CNS metastases and identifies rare populations of cells that underlie the biology of this devastating disease.

2021 ◽  
Vol 3 (Supplement_3) ◽  
pp. iii7-iii8
Author(s):  
Inna Smalley ◽  
Zhihua Chen ◽  
Manali Phadke ◽  
Jiannong Li ◽  
Xiaoqing Yu ◽  
...  

Abstract We interrogated the microenvironment of 43 clinical samples from melanoma skin, brain (MBM) and leptomeningeal metastases (LMM) using single-cell RNA-seq analysis to determine how therapeutic intervention shaped the immune environment and affected patient survival. LMM is a poorly-characterized, devastating complication of late-stage disease, typically refractory to treatment and associated with dismal survival time. Analysis of serial specimens over the course of therapy demonstrated reductions in melanoma cells and macrophages, coupled with increased levels of T cells and dendritic cells in the CSF of a rare extraordinary responder, whereas typical poor survivors showed no improvement in T cell responses. In MBM patients, both targeted therapy and immunotherapy was associated with increased immune infiltrate. Treatment with targeted therapy was associated with an enrichment of CD8 T cells, while immunotherapy was associated with a more diverse lymphocyte landscape and higher numbers of antibody-producing cells. These findings were confirmed by multiplex-IF staining of patient specimens and using an immune-competent mouse model of MBM. Interestingly, a history of prior radiation therapy was associated with a diminished myeloid compartment. Although immune infiltrate was significantly lower in the brain compared to skin tumors, the phenotypic make-up of the lymphocyte compartment was quite similar, suggesting that the immune cells may have trafficked from the periphery to the brain post-therapy. Correlation analysis across the entire immune landscape identified the presence of a rare, novel population of dendritic cells (DC3s) to be correlated with increased overall survival, regardless of disease site/treatment. The presence of DC3s positively regulated the immune environment of both patient samples and preclinical melanoma models through modulation of activated T cells and MHC expression in the tumor. Overall, we present the first ever comprehensive single-cell atlas of the tumor microenvironment in melanoma CNS metastases in response to therapy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Tomohiro Aoki ◽  
Lauren C. Chong ◽  
Katsuyoshi Takata ◽  
Katy Milne ◽  
Elizabeth Chavez ◽  
...  

Introduction: Classic Hodgkin lymphoma (CHL) features a unique crosstalk between malignant cells and different types of normal immune cells in the tumor-microenvironment (TME). On the basis of histomorphologic and immunophenotypic features of the malignant Hodgkin and Reed-Sternberg (HRS) cells and infiltrating immune cells, four histological subtypes of CHL are recognized: Nodular sclerosing (NS), Mixed cellularity, Lymphocyte-rich (LR) and Lymphocyte-depleted CHL. Recently, our group described the high abundance of various types of immunosuppressive CD4+ T cells including LAG3+ and/or CTLA4+ cells in the TME of CHL using single cell RNA sequencing (scRNAseq). However, the TME of LR-CHL has not been well characterized due to the rarity of the disease. In this study, we aimed at characterizing the immune cell profile of LR-CHL at single cell resolution. METHODS: We performed scRNAseq on cell suspensions collected from lymph nodes of 28 primary CHL patients, including 11 NS, 9 MC and 8 LR samples, with 5 reactive lymph nodes (RLN) serving as normal controls. We merged the expression data from all cells (CHL and RLN) and performed batch correction and normalization. We also performed single- and multi-color immunohistochemistry (IHC) on tissue microarray (TMA) slides from the same patients. In addition, an independent validation cohort of 31 pre-treatment LR-CHL samples assembled on a TMA, were also evaluated by IHC. Results: A total of 23 phenotypic cell clusters were identified using unsupervised clustering (PhenoGraph). We assigned each cluster to a cell type based on the expression of genes described in published transcriptome data of sorted immune cells and known canonical markers. While most immune cell phenotypes were present in all pathological subtypes, we observed a lower abundance of regulatory T cells (Tregs) in LR-CHL in comparison to the other CHL subtypes. Conversely, we found that B cells were enriched in LR-CHL when compared to the other subtypes and specifically, all four naïve B-cell clusters were quantitatively dominated by cells derived from the LR-CHL samples. T follicular helper (TFH) cells support antibody response and differentiation of B cells. Our data show the preferential enrichment of TFH in LR-CHL as compared to other CHL subtypes, but TFH cells were still less frequent compared to RLN. Of note, Chemokine C-X-C motif ligand 13 (CXCL13) was identified as the most up-regulated gene in LR compared to RLN. CXCL13, which is a ligand of C-X-C motif receptor 5 (CXCR5) is well known as a B-cell attractant via the CXCR5-CXCL13 axis. Analyzing co-expression patterns on the single cell level revealed that the majority of CXCL13+ T cells co-expressed PD-1 and ICOS, which is known as a universal TFH marker, but co-expression of CXCR5, another common TFH marker, was variable. Notably, classical TFH cells co-expressing CXCR5 and PD-1 were significantly enriched in RLN, whereas PD-1+ CXCL13+ CXCR5- CD4+ T cells were significantly enriched in LR-CHL. These co-expression patterns were validated using flow cytometry. Moreover, the expression of CXCR5 on naïve B cells in the TME was increased in LR-CHL compared to the other CHL subtypes We next sought to understand the spatial relationship between CXCL13+ T cells and malignant HRS cells. IHC of all cases revealed that CXCL13+ T cells were significantly enriched in the LR-CHL TME compared to other subtypes of CHL, and 46% of the LR-CHL cases showed CXCL13+ T cell rosettes closely surrounding HRS cells. Since PD-1+ T cell rosettes are known as a specific feature of LR-CHL, we confirmed co-expression of PD-1 in the rosetting cells by IHC in these cases. Conclusions: Our results reveal a unique TME composition in LR-CHL. LR-CHL seems to be distinctly characterized among the CHL subtypes by enrichment of CXCR5+ naïve B cells and CD4+ CXCL13+ PD-1+ T cells, indicating the importance of the CXCR5-CXCL13 axis in the pathogenesis of LR-CHL. Figure Disclosures Savage: BeiGene: Other: Steering Committee; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie: Honoraria; Roche (institutional): Research Funding; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie, Servier: Consultancy. Scott:Janssen: Consultancy, Research Funding; Celgene: Consultancy; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoString, Research Funding; NIH: Consultancy, Other: Co-inventor on a patent related to the MCL35 assay filed at the National Institutes of Health, United States of America.; Roche/Genentech: Research Funding; Abbvie: Consultancy; AstraZeneca: Consultancy. Steidl:AbbVie: Consultancy; Roche: Consultancy; Curis Inc: Consultancy; Juno Therapeutics: Consultancy; Bayer: Consultancy; Seattle Genetics: Consultancy; Bristol-Myers Squibb: Research Funding.


2019 ◽  
Author(s):  
Ang A. Tu ◽  
Todd M. Gierahn ◽  
Brinda Monian ◽  
Duncan M. Morgan ◽  
Naveen K. Mehta ◽  
...  

Abstract High-throughput 3’ single-cell RNA-Sequencing (scRNA-Seq) allows for cost-effective, detailed characterization of thousands of individual immune cells from healthy and diseased tissues. Current techniques, however, are limited in their ability to elucidate essential immune cell features, including the variable sequences of T cell receptors (TCRs) that confer antigen specificity in T cells. Here, we present an enrichment strategy that enables simultaneous analysis of TCR variable sequences and corresponding full transcriptomes from 3’ barcoded scRNA-Seq samples. This approach is compatible with common 3’ scRNA-Seq methods, and adaptable to processed samples post hoc. We applied the technique to resolve clonotype-to-phenotype relationships among antigen-activated T cells from immunized mice and from patients with food allergy. We observed diverse but preferential cellular phenotypes manifest among subsets of expanded clonotypes, including functional Th2 states associated with food allergy. These results demonstrate the utility of our method when studying complex diseases in which clonotype-driven immune responses are critical to understanding the underlying biology.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Guohe Song ◽  
Yang Shi ◽  
Meiying Zhang ◽  
Shyamal Goswami ◽  
Saifullah Afridi ◽  
...  

AbstractDiverse immune cells in the tumor microenvironment form a complex ecosystem, but our knowledge of their heterogeneity and dynamics within hepatocellular carcinoma (HCC) still remains limited. To assess the plasticity and phenotypes of immune cells within HBV/HCV-related HCC microenvironment at single-cell level, we performed single-cell RNA sequencing on 41,698 immune cells from seven pairs of HBV/HCV-related HCC tumors and non-tumor liver tissues. We combined bio-informatic analyses, flow cytometry, and multiplex immunohistochemistry to assess the heterogeneity of different immune cell subsets in functional characteristics, transcriptional regulation, phenotypic switching, and interactions. We identified 29 immune cell subsets of myeloid cells, NK cells, and lymphocytes with unique transcriptomic profiles in HCC. A highly complex immunological network was shaped by diverse immune cell subsets that can transit among different states and mutually interact. Notably, we identified a subset of M2 macrophage with high expression of CCL18 and transcription factor CREM that was enriched in advanced HCC patients, and potentially participated in tumor progression. We also detected a new subset of activated CD8+ T cells highly expressing XCL1 that correlated with better patient survival rates. Meanwhile, distinct transcriptomic signatures, cytotoxic phenotypes, and evolution trajectory of effector CD8+ T cells from early-stage to advanced HCC were also identified. Our study provides insight into the immune microenvironment in HBV/HCV-related HCC and highlights novel macrophage and T-cell subsets that could be further exploited in future immunotherapy.


1989 ◽  
Vol 170 (3) ◽  
pp. 1045-1050 ◽  
Author(s):  
J A Richt ◽  
L Stitz ◽  
H Wekerle ◽  
R Rott

A homogeneous T cell line NM1 with Borna disease (BD) virus reactivity could be established. The NM1 cells have been characterized as CD4+ T cells. Adoptive transfer revealed that this MHC class II-restricted immune cell is responsible for the immunopathological effect leading to BD, a progressive meningoencephalomyelitis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1859-1859 ◽  
Author(s):  
Yongxian Hu ◽  
Zhang Yanlei ◽  
Guoqing Wei ◽  
Chang alex Hong ◽  
He Huang

Background BCMA CAR-T cells have demonstrated substantial clinical activity against relapsed/refractory multiple myeloma (RRMM). In different clinical trials, the overall response rate (ORR) varied from 50% to 100%. Complete remission (CR) rate varied from 20% to 80%. Here we developed a BCMA CAR-T cell product manufactured via lentiviral vector-mediated transduction of activated T cells to express a second-generation CAR with 4-1BB costimulatory domain and evaluated the efficacy and safety, moreover, dynamics of immune cell subsets using single-cell mass cytometry during treatment were analyzed. Methods Our trial (ChiCTR1800017404) is a phase 1, single-arm, open-label single center study to evaluate the safety and efficacy of autologous BCMA CAR-T treatment for RRMM. Patients were subjected to a lymphodepleting regimen with Flu and Cy prior to CAR-T infusion. BCMA CAR-T cells were administered as a single infusion at a median dose of 3.5 (1 to 6) ×106/kg. MM response assessment was conducted according to the International Uniform Response Criteria. Cytokine-release syndrome (CRS) was graded as Lee DW et al described (Blood.2014;124(2):188-195). Phenotypic analysis of peripheral blood mononuclear cells (PBMCs), frozen BCMA CAR-T aliquots, phenotype and in vivo kinetics of immune cell subsets after CAR-T infusion were performed by single-cell mass cytometry. Results As of the data cut-off date (August 1st, 2019), 33 patients, median age 62.5 (49 to 75) years old were infused with BCMA CAR-T cells. The median observation period is 8.0 (0.7 to 18) months. ORR was 100% (The patient who died of infection at 20 days after CAR-T infusion were excluded). All the 32 patients achieved MRD negative in bone marrow by flow cytometry in 2 weeks after CAR-T infusion. Partial response (4 PR, 12.1%), VGPR (7 VGPR, 21.2%), and complete response (21 CR, 63.6%) within 12 weeks post CAR-T infusion were achieved. Durable responses from 4 weeks towards the data cut-off date were found in 28/33 patients (84.8%) (Figure 1a). All patients had detectable CAR-T expansion by flow cytometry from Day 3 post CAR-T cell infusion. The peak CAR-T cell expansion in CD3+ lymphocytes of peripheral blood (PB) varied from 35% to 95% with a median percentage of 82.9%. CRS was reported in all the 33 patients, including 4 with Grade 1, 13 with Grade 2 and 16 with Grade 3. During follow-up, 1-year progression-free survival (PFS) was 70.7% (Figure 1b) and overall survival (OS) was 71.7% (Figure 1c). Multivariate analysis of patients with PR and patients with CR+VGPR revealed that factors including extramedullary infiltration, age>60 years old, high-risk cytogenetics, late stage and CAR-T cell dose were not associated with clinical response (P>0.05). Single-cell mass cytometry revealed that the frequency of total T cells, CD8+ T cells, NK cells and CD3+CD56+ NKT cells in PB was not associated with BCM CAR-T expansion or clinical response. CD8+ Granzyme B+ Ki-67+ CAR-T cells expanded prominently in CRS period. As serum cytokines increased during CRS, non-CAR-T immune cell subsets including PD1+ NK cells, CD8+ Ki-67+ ICOS+ T cells expanded dominantly implying that non-CAR-T cells were also activated after CAR-T treatment. After CRS, stem cell like memory CAR-T cells (CD45RO+ CCR7- CD28- CD95+) remain the main subtype of CAR-T cells (Figure 1d). Conclusions Our data showed BCMA CAR-T treatment is safe with prominent efficacy which can overcome the traditional high-risk factors. We also observed high expansion level and long-term persistence of BCMA CAR-T cells contribute to potent anti-myeloma activity. Stem cell like memory CAR-T cells might be associated with long-term persistence of BCMA CAR-T cells. These initial data provide strong evidence to support the further development of this anti-myeloma cellular immunotherapy. Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Gang Xu ◽  
Furong Qi ◽  
Hanjie Li ◽  
Qianting Yang ◽  
Haiyan Wang ◽  
...  

Understanding the mechanism that leads to immune dysfunction induced by SARS-CoV2 virus is crucial to develop treatment for severe COVID-19. Here, using single cell RNA-seq, we characterized the peripheral blood mononuclear cells (PBMC) from uninfected controls and COVID-19 patients, and cells in paired broncho-alveolar lavage fluid (BALF). We found a close association of decreased dendritic cells (DC) and increased monocytes resembling myeloid-derived suppressor cells (MDSC) which correlated with lymphopenia and inflammation in the blood of severe COVID-19 patients. Those MDSC-like monocytes were immune-paralyzed. In contrast, monocyte-macrophages in BALFs of COVID-19 patients produced massive amounts of cytokines and chemokines, but secreted little interferons. The frequencies of peripheral T cells and NK cells were significantly decreased in severe COVID-19 patients, especially for innate-like T and various CD8+ T cell subsets, compared to health controls. In contrast, the proportions of various activated CD4+ T cell subsets, including Th1, Th2 and Th17-like cells were increased and more clonally expanded in severe COVID-19 patients. Patients' peripheral T cells showed no sign of exhaustion or augmented cell death, whereas T cells in BALFs produced higher levels of IFNG, TNF, CCL4 and CCL5 etc. Paired TCR tracking indicated abundant recruitment of peripheral T cells to the patients' lung. Together, this study comprehensively depicts how the immune cell landscape is perturbed in severe COVID-19.


Author(s):  
Joost Dejaegher ◽  
Lien Solie ◽  
Zoé Hunin ◽  
Raf Sciot ◽  
David Capper ◽  
...  

Abstract Background Histologically classified Glioblastomas (GBM) can have different clinical behavior and response to therapy, for which molecular subclassifications have been proposed. We evaluated the relationship of epigenetic GBM subgroups with immune cell infiltrations, systemic immune changes during radiochemotherapy and clinical outcome. Methods 450K genome-wide DNA methylation was assessed on tumor tissue from 93 patients with newly diagnosed GBM, treated with standard radiochemotherapy and experimental immunotherapy. Tumor infiltration of T cells, myeloid cells and PD-1 expression were evaluated. Circulating immune cell populations and selected cytokines were assessed on blood samples taken before and after radiochemotherapy. Results Forty-two tumors had a mesenchymal, 27 a RTK II, 17 a RTK I and 7 an IDH DNA methylation pattern Mesenchymal tumors had the highest amount of tumor-infiltrating CD3+ and CD8+ T cells and IDH tumors the lowest. There were no significant differences for CD68+ cells, FoxP3+ cells and PD-1 expression between groups. Systemically, there was a relative increase of CD8+ T cells and CD8+ PD-1 expression and a relative decrease of CD4+ T cells after radiochemotherapy in all subgroups except IDH tumors. Overall survival was the longest in the IDH group (median 36 months), intermediate in RTK II tumors (27 months) and significantly lower in mesenchymal and RTK I groups (15.5 and 16 months respectively). Conclusions Methylation based stratification of GBM is related to T cell infiltration and survival, with IDH and mesenchymal tumors representing both ends of a spectrum. DNA methylation profiles could be useful in stratifying patients for immunotherapy trials.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A1010-A1010
Author(s):  
Osama Rahma ◽  
Mathew Katz ◽  
Todd Bauer ◽  
Brian Wolpin ◽  
Chee-Chee Stucky ◽  
...  

BackgroundPancreatic cancer (PC) is a challenging target for immunotherapy due to its immune-suppressive microenvironment. Neoadjuvant chemoradiation (CRT) can increase the presence of tumor-infiltrating lymphocytes (TILs). We hypothesized that the combination of CRT and pembrolizumab can further expand and activate TILs.MethodsPatients with resectable or borderline resectable PC were randomized 2:1 to the investigational treatment (Arm A) of pembrolizumab 200mg IV every 3 weeks concurrently with CRT (capecitabine 825 mg/m2 orally twice daily and radiation 50.4 Gy in 28 fractions over 28 days) or CRT only (Arm B) prior to surgical resection. The primary endpoints were safety and difference in TILs density between Arm A and B assessed using multiplexed immunofluorescence on resected tumor specimens. As a correlate analysis, single cell RNA-sequencing (scRNA-seq) was performed to quantify gene expression in T cells from tumors and peripheral blood, and to track expanded T cell clonotypes in these compartments (n=4 patients Arm A; n=3 patients Arm B). The study was amended after enrollment of 37 patients to allow FOLFIRINOX prior to CRT, given changes in standard of care.Results37 patients were enrolled (24 Arm A, 13 Arm B). After neoadjuvant therapy, 13 patients had unresectable disease (9 on A, 4 on B), and 24 patients underwent surgery and were evaluable for the TILs primary endpoint (17 arm A, 7 arm B). The mean difference (A-B) in CD8+ T cell density was 36 cells/mm2 (95% CI -85 to 157, stdev 130) (p 0.48). Additional analysis did not show significant differences in activated cytotoxic T cells, regulatory T cells, M1- or M2-like polarized macrophages, or granulocytes. The median recurrence free survival (RFS) was 18.2 months on Arm A and 14.1 on Arm B (p 0.41). Overall survival was 27.8 months on Arm A and 24.3 on Arm B (p 0.68) with a median follow up of 2.2 years. The most common grade 3 treatment-related toxicities were lymphopenia reported in 29% on Arm A and 31% on Arm B, respectively followed by diarrhea in 8% on Arm A attributed to CRT. scRNA-seq revealed clonal expansion and expression of co-inhibitory markers among TIL subsets.ConclusionsThe combination of CRT and pembrolizumab is safe. Preliminary analysis shows that the addition of pembrolizumab to CRT has minimal effects on intratumoral densities of TILs and other immune cell populations. Single cell transcriptome analyses enable in-depth characterization of the functional responses of T cells to pembrolizumab in the setting of CRT.AcknowledgementsThis study was funded by MerckTrial RegistrationNCT02305186Ethics ApprovalThe study was conducted at 6 sites: University of Virginia, Dana Farber Cancer Institute, MD Anderson Cancer Center (MDACC), Mayo Clinic, Hartford Healthcare Cancer Center, and University of Miami. Written informed consent was provided by the study participants and the protocol was approved by the relevant local IRBs in each site.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 40-41
Author(s):  
Jovian Yu ◽  
Xiufen Chen ◽  
James Godfrey ◽  
Girish Venkataraman ◽  
Sonali M. Smith ◽  
...  

Introduction: Classical Hodgkin lymphoma (cHL) is characterized by a robust and complex immune cell infiltrate and the rare presence of malignant Hodgkin-Reed-Sternberg (HRS) cells. At the genetic level, HRS cells recurrently acquire alterations that lead to defective antigen presentation (β2 microglobulin mutations) and mediate T cell dysfunction (PD-L1 copy gains/amplifications) in order to subvert host immune surveillance. The clinical relevance of PD-L1 protein over-expression in cHL is clear, as response rates to PD-1 blockade therapy are extremely high among patients with relapsed/refractory (r/r) disease. Despite its remarkable efficacy, the cells that mediate response to anti-PD-1 therapy in cHL remain undefined. Recent analyses have highlighted a possible role for CD4+ T cells in mediating the clinical activity of anti-PD-1 therapy in cHL. CD4+ T cells significantly outnumber CD8+ T cells in cHL lesions and are more frequently juxtaposed to HRS cells in situ. Furthermore, HLA class II expression on HRS cells predicted higher complete response rates to PD-1 blockade therapy in r/r cHL patients. However, a candidate T cell population capable of specific reactivity to antigens expressed by HRS cells has yet to be identified. This information is critical as such T cells might be functionally reinvigorated to mediate HRS cell elimination following PD-1 blockade therapy. In order to address this key knowledge gap, we analyzed data at single cell (sc) resolution using paired RNA and T cell receptor (TCR) sequencing in 9 diagnostic cHL and 5 reactive lymph node (RLN) specimens. Methods: Sequencing was performed using the 10x Genomics Chromium Single Cell 5' Gene Expression and V(D)J workflows. B-cell depletion of each sample was achieved using CD19 microbeads and negative selection to enrich T cell populations. Reads were analyzed and aligned with CellRanger (v3.1.0) and Seurat (v3.2.0) was used to conduct clustering by a shared nearest neighbor (SNN) graph on scRNA data. TCR sequencing data was integrated using scRepertoire (v1.0.0). Results: A detailed map of the immune cell states in cHL was created using scRNA-seq (10X) data on 79,085 cells from 9 cHL (52,602 cells) and 5 RLN samples (26,484 cells) expressing a total of 21,421 genes (mean 5649 cells/sample; mean 2849 mRNA reads/cell). Dimensionality reduction and unsupervised graph-based clustering revealed 21 distinct cell type and activation state clusters, including T cells, NK cells, macrophages, and dendritic cells (Fig 1A-B). A cluster identifying HRS cells was not observed, consistent with a recently published report. Ten T cell clusters were identified (47,573 cells), including naive- and memory-like T cells, effector/cytotoxic CD8+ T cells, regulatory T cells, and T follicular helper cells. Unexpectedly, a putative exhausted T cell cluster was not clearly observed. The relative contributions of cHL and RLNs cases to these clusters are shown in Fig 1C. Paired TCR sequencing was available for 23,943 cells. Overall TCR diversity was lower among cHL samples compared to RLN specimens (Fig 1D). In cHL samples, modest clonal expansion within regulatory T cell and memory CD4+ T cell clusters was observed, but the most striking clonal expansion occurred among cells assigned to effector/cytotoxic CD8+ T cell clusters - a finding not observed in most RLN specimens (Fig 1E). Clonally-expanded effector/cytotoxic CD8+ T cells displayed high expression of granzymes (GZMA, GZMH, GZMK), cytokines (TNF, IFNG) and chemokines (CCL4/CCL5), and modest expression of exhaustion markers (PDCD1, ENTPD1, HAVCR2, ITGAE), contrasting with data from single-cell analyses of solid tumors. Clonal expansion of effector/cytotoxic CD8+ T cells was particularly robust in EBV-positive cHLs, likely due to recognition of viral-derived epitopes displayed on HRS cells (Fig 1F). Phenotypic and functional validation of key immune cell clusters in cHL specimens using spectral cytometry is underway and will be reported at the meeting. Conclusions: For the first time, our data have unveiled the nature of the T cell repertoire in cHL at single cell resolution. Our results reveal a recurrent pattern of clonal expansion within effector CD8+ cells, which may be the HRS antigen-specific T cells that mediate response to PD-1 blockade. This hypothesis requires confirmation through similar analyses of pre- and on-treatment biopsies of cHL patients receiving anti-PD-1 therapy. Disclosures Godfrey: Gilead: Research Funding; Merck: Research Funding; Verastem: Research Funding. Venkataraman:EUSA Pharma: Speakers Bureau. Smith:Janssen: Consultancy; BMS: Consultancy; TG Therapeutics: Consultancy, Research Funding; Genentech/Roche: Consultancy, Other: Support of parent study and funding of editorial support, Research Funding; Karyopharm: Consultancy, Research Funding; FortySeven: Research Funding; Pharmacyclics: Research Funding; Acerta: Research Funding; Celgene: Consultancy, Research Funding. Kline:Kite/Gilead: Speakers Bureau; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees; Merck: Research Funding; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Verastem: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document