scholarly journals LMD-03. Single cell analysis reveals how therapy remodels the tumor microenvironment in melanoma CNS metastases and uncovers a novel predictor of improved survival

2021 ◽  
Vol 3 (Supplement_3) ◽  
pp. iii7-iii8
Author(s):  
Inna Smalley ◽  
Zhihua Chen ◽  
Manali Phadke ◽  
Jiannong Li ◽  
Xiaoqing Yu ◽  
...  

Abstract We interrogated the microenvironment of 43 clinical samples from melanoma skin, brain (MBM) and leptomeningeal metastases (LMM) using single-cell RNA-seq analysis to determine how therapeutic intervention shaped the immune environment and affected patient survival. LMM is a poorly-characterized, devastating complication of late-stage disease, typically refractory to treatment and associated with dismal survival time. Analysis of serial specimens over the course of therapy demonstrated reductions in melanoma cells and macrophages, coupled with increased levels of T cells and dendritic cells in the CSF of a rare extraordinary responder, whereas typical poor survivors showed no improvement in T cell responses. In MBM patients, both targeted therapy and immunotherapy was associated with increased immune infiltrate. Treatment with targeted therapy was associated with an enrichment of CD8 T cells, while immunotherapy was associated with a more diverse lymphocyte landscape and higher numbers of antibody-producing cells. These findings were confirmed by multiplex-IF staining of patient specimens and using an immune-competent mouse model of MBM. Interestingly, a history of prior radiation therapy was associated with a diminished myeloid compartment. Although immune infiltrate was significantly lower in the brain compared to skin tumors, the phenotypic make-up of the lymphocyte compartment was quite similar, suggesting that the immune cells may have trafficked from the periphery to the brain post-therapy. Correlation analysis across the entire immune landscape identified the presence of a rare, novel population of dendritic cells (DC3s) to be correlated with increased overall survival, regardless of disease site/treatment. The presence of DC3s positively regulated the immune environment of both patient samples and preclinical melanoma models through modulation of activated T cells and MHC expression in the tumor. Overall, we present the first ever comprehensive single-cell atlas of the tumor microenvironment in melanoma CNS metastases in response to therapy.

2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii17-ii17
Author(s):  
Inna Smalley ◽  
Zhihua Chen ◽  
Manali Phadke ◽  
Jiannong Li ◽  
Xiaoqing Yu ◽  
...  

Abstract Melanoma brain metastases (MBM) and leptomeningeal metastases (LMM) are two manifestations of melanoma dissemination to the CNS with vastly different survival outcomes. Analysis of single cell RNA-Seq data from 43 clinical specimens has uncovered a distinct, immune-suppressed T cell landscape in the LMM microenvironment that is distinct to those of the brain and skin metastases. An LMM patient with an extraordinarily long survival and documented response to therapy demonstrated an immune repertoire that was distinct from those of typical poor survivors and more similar to CSF from non-LMM donors. Analysis of serial specimens over the course of therapy demonstrated reductions in melanoma cells and macrophages, coupled with increased levels of T cells and dendritic cells in the CSF of the extraordinary responder, whereas poor survivors showed no improvement in T cell responses. In MBM patients, targeted therapy and immunotherapy was associated with increased immune infiltrate, with similar T cell transcriptional diversity noted between skin metastases and MBM - suggestive of immune cell trafficking into the brain. Treatment with targeted therapy was associated with an enrichment of CD8 T cells. Immunotherapy was associated with a more diverse lymphocyte landscape and higher numbers of antibody-producing cells. These findings were confirmed by multiplexed staining of patient specimens and using an immune-competent mouse model of MBM. Correlation analysis across the entire immune landscape identified the presence of a rare, novel population of dendritic cells (DC3s) to be correlated with increased overall survival, regardless of disease site/treatment. The presence of DC3s positively regulated the immune environment of both patient samples and preclinical melanoma models through modulation of activated T cells and MHC expression in the tumor. Our study provides the first comprehensive atlas of two distinct sites of melanoma CNS metastases and identifies rare populations of cells that underlie the biology of this devastating disease.


Oncogene ◽  
2021 ◽  
Author(s):  
Philip Bischoff ◽  
Alexandra Trinks ◽  
Benedikt Obermayer ◽  
Jan Patrick Pett ◽  
Jennifer Wiederspahn ◽  
...  

AbstractRecent developments in immuno-oncology demonstrate that not only cancer cells, but also the tumor microenvironment can guide precision medicine. A comprehensive and in-depth characterization of the tumor microenvironment is challenging since its cell populations are diverse and can be important even if scarce. To identify clinically relevant microenvironmental and cancer features, we applied single-cell RNA sequencing to ten human lung adenocarcinomas and ten normal control tissues. Our analyses revealed heterogeneous carcinoma cell transcriptomes reflecting histological grade and oncogenic pathway activities, and two distinct microenvironmental patterns. The immune-activated CP²E microenvironment was composed of cancer-associated myofibroblasts, proinflammatory monocyte-derived macrophages, plasmacytoid dendritic cells and exhausted CD8+ T cells, and was prognostically unfavorable. In contrast, the inert N³MC microenvironment was characterized by normal-like myofibroblasts, non-inflammatory monocyte-derived macrophages, NK cells, myeloid dendritic cells and conventional T cells, and was associated with a favorable prognosis. Microenvironmental marker genes and signatures identified in single-cell profiles had progonostic value in bulk tumor profiles. In summary, single-cell RNA profiling of lung adenocarcinoma provides additional prognostic information based on the microenvironment, and may help to predict therapy response and to reveal possible target cell populations for future therapeutic approaches.


2020 ◽  
Author(s):  
Philip Bischoff ◽  
Alexandra Trinks ◽  
Benedikt Obermayer ◽  
Jan Patrick Pett ◽  
Annika Lehmann ◽  
...  

Recent developments in immuno-oncology demonstrate that not only cancer cells, but also features of the tumor microenvironment guide precision medicine. Still, the relationship between tumor and microenvironment remains poorly understood. To overcome this limitation and identify clinically relevant microenvironmental and cancer features, we applied single-cell RNA sequencing to lung adenocarcinomas. While the highly heterogeneous carcinoma cell transcriptomes reflected histological grade and activity of relevant oncogenic pathways, our analysis revealed two distinct microenvironmental patterns. We identified a prognostically unfavorable group of tumors with a microenvironment composed of cancer-associated myofibroblasts, exhausted CD8+ T cells, proinflammatory monocyte-derived macrophages and plasmacytoid dendritic cells (CEP2 pattern) and a prognostically favorable group characterized by myeloid dendritic cells, anti-inflammatory monocyte-derived macrophages, normal-like myofibroblasts, NK cells and conventional T cells (MAN2C pattern). Our results show that single-cell gene expression profiling allows to identify patient subgroups based on the tumor microenvironment beyond cancer cell-centric profiling.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii104-ii104
Author(s):  
Christopher Alvarez-Breckenridge ◽  
Samuel Markson ◽  
Jackson Stocking ◽  
Matt Lastrapes ◽  
Naema Nayyar ◽  
...  

Abstract Immune checkpoint inhibitors (ICI) have revolutionized oncologic treatment for metastatic melanoma. With improved systemic control, there has been increasing prevalence of patients with brain metastases. Recent evidence has demonstrated intracranial responses in a subset of these patients treated with ICI. We hypothesize that the response to ICI in melanoma brain metastases (MBM) is reflective of unique features within the tumor microenvironment of the brain. A cohort of 27 patients, encompassing 8 pre- and 19 post-immunotherapy MBM underwent single cell RNA sequencing (Smart-Seq2). The cohort includes patients with longitudinal cranial resections and simultaneously resected, spatially distinct tumors. Each tumor underwent unsupervised transcriptomic analysis, differential gene expression, inferred copy number variation, and T-cell receptor (TCR) clonotyping. Published extracranial melanoma single cell datasets were used to compare the tumor microenvironment of the brain and periphery in response to ICI. A total of 14,027 cells (6,189 malignant, 7,838 non-malignant) were sequenced. Brain metastases demonstrated a heterogeneous distribution of macrophage states. Intracranial macrophages were found to be more tumor-supportive than their extracranial counterparts. MBM also included a distribution of reactive neutrophils and astrocytes. Analysis across pre- and post-treatment MBM demonstrated an increase in clonally expanded T cells in patients responding to ICI. Across longitudinal brain metastases collected from the same patients, there was evidence of identical T cell clones across timepoints and locations. Single cell sequencing of MBM provides insights into the cellular composition of the tumor and microenvironment. Our data suggest the cellular heterogeneity within MBM is unique when compared to extracranial disease. Additionally, T cell clonal expansion is found following ICI and T cells of the same clonotype infiltrate spatially and temporally separated brain metastases. These findings raise potential therapeutic implications as we learn to target the differential features of the innate and adaptive immune system within brain metastases and their extracranial counterparts.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A30.1-A30
Author(s):  
N Benhamouda ◽  
I Sam ◽  
N Epaillard ◽  
A Gey ◽  
A Saldmann ◽  
...  

BackgroundCD70, a costimulatory molecule on antigen presenting cells, is known to activate CD27-expressing T cells. CD27-CD70 interaction leads to the release of soluble CD27 (sCD27). However, persistent interaction of CD27 and CD70 such as in chronic infection may exhaust the T cell pool and promote apoptosis. Surprisingly, our analysis based on TCGA database show that clear cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors. Despite the important clinical efficacy of immunotherapy by anti-PD-1 in RCC patients, the overall response to anti-PD1 remains modest. The relationship between the CD27-CD70 interaction in the RCC and the response to immunotherapy is still unclear.Materials and MethodsTo study the CD27 and CD70 expression in the tumor microenvironment (TME), FFPE tumor tissues from 25 RCC patients were analysed using multiplex in situ immunofluorescence. 10 fresh RCC tumor samples were collected to analyse the phenotype of CD27+ T cells by flow cytometry and 4 samples were proceeded for single-cell RNA-seq analysis. A cohort of metastatic RCC patients (n = 35) treated by anti-PD-1 were enrolled for the measurement of plasma sCD27 by ELISA and the survival analysis is also realized.ResultsIn the TME, we demonstrated that CD27+ T cells interact with CD70-expressing tumor cells. In fresh tumors from RCC patients, CD27+ T cells express higher levels of cleaved caspase 3 (a classical marker of apoptosis) than CD27- T cells. We confirmed the apoptotic signature (BAX, FASLG, BCL2L11, CYCS, FBXO32, LGALS1, PIK3R1, TERF1, TXNIP, CDKN2A) of CD27+ T cells by single-cell RNAseq analysis. CD27+T cells also had a tissue resident memory T cell phenotype with enriched gene expression of ITGAE, PRDM1, RBPJ and ZNF683. Moreover, CD27+T cells display an exhaustion phenotype with the expression of multiple inhibitory receptors gene signature (PDCD1, CTLA4, HAVCR2, LAG3, etc). Besides, intratumoral CD27-CD70 interaction significantly correlates with plasma sCD27 concentration in RCC (p = 0.0017). In metastatic RCC patients treated with anti-PD-1, higher levels of sCD27 predict poor overall survival (p = 0.037), while it did not correlate with inflammatory markers or clinical prognostic criteria.ConclusionsIn conclusion, we demonstrated that sCD27, a surrogate of T cell dysfunction in tumors likely induced by persistent interactions of CD27+T cells and CD70-expressing tumor cells, is a predictive biomarker of resistance to immunotherapy in mRCC. To our knowledge, this is the first report showing that a peripheral blood biomarker may reflect certain aspects of the tumor-host interaction in the tumor microenvironment. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be further extended to other types of tumors. CD70-CD27 interaction could thus be considered as a mechanism of tumor escape, but also a novel therapeutic target in cancers.Disclosure InformationN. Benhamouda: None. I. Sam: None. N. Epaillard: None. A. Gey: None. A. Saldmann: None. J. Pineau: None. M. Hasan: None. V. Verkarre: None. V. Libri: None. S. Mella: None. C. Granier: None. C. Broudin: None. P. Ravel: None. B. Jabla: None. N. Chaput: None. L. Albiges: None. Y. Vano: None. O. Adotevi: None. S. Oudard: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Modest; SIRIC CARPEM, FONCER. E. Tartour: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Modest; Fondation ARC, INCA PLBio, Labex Immuno-Oncology, SIRIC CARPEM, FONCER, IDEX université de Paris, Inserm Transfert.


2021 ◽  
Author(s):  
Sakthi Rajendran ◽  
Clayton Peterson ◽  
Alessandro Canella ◽  
Yang Hu ◽  
Amy Gross ◽  
...  

Low grade gliomas (LGG) account for about two-thirds of all glioma diagnoses in adolescents and young adults (AYA) and malignant progression of these patients leads to dismal outcomes. Recent studies have shown the importance of the dynamic tumor microenvironment in high-grade gliomas (HGG), yet its role is still poorly understood in low-grade glioma malignant progression. Here, we investigated the heterogeneity of the immune microenvironment using a platelet-derived growth factor (PDGF)-driven RCAS (replication-competent ASLV long terminal repeat with a splice acceptor) glioma model that recapitulates the malignant progression of low to high-grade glioma in humans and also provides a model system to characterize immune cell trafficking and evolution. To illuminate changes in the immune cell landscape during tumor progression, we performed single-cell RNA sequencing on immune cells isolated from animals bearing no tumor (NT), LGG and HGG, with a particular focus on the myeloid cell compartment, which is known to mediate glioma immunosuppression. LGGs demonstrated significantly increased infiltrating T cells, CD4 T cells, CD8 T cells, B cells, and natural killer cells in the tumor microenvironment, whereas HGGs significantly abrogated this infiltration. Our study identified two distinct macrophage clusters in the tumor microenvironment; one cluster appeared to be bone marrow-derived while another was defined by overexpression of Trem2, a marker of tumor associated macrophages. Our data demonstrates that these two distinct macrophage clusters show an immune-activated phenotype (Stat1, Tnf, Cxcl9 and Cxcl10) in LGG which evolves to an immunosuppressive state (Lgals3, Apoc1 and Id2) in HGG that restricts T cell recruitment and activation. We identified CD74 and macrophage migration inhibition factor (MIF) as potential targets for these distinct macrophage populations. Interestingly, these results were mirrored by our analysis of the TCGA dataset, which demonstrated a statistically significant association between CD74 overexpression and decreased overall survival in AYA patients with grade II gliomas. Targeting immunosuppressive myeloid cells and intra-tumoral macrophages within this therapeutic window may ameliorate mechanisms associated with immunosuppression before and during malignant progression.


Cancer Cell ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 614-615 ◽  
Author(s):  
Christina Pfirschke ◽  
Marie Siwicki ◽  
Hsin-Wei Liao ◽  
Mikael J. Pittet

2001 ◽  
Vol 356 (1406) ◽  
pp. 177-184 ◽  
Author(s):  
Charles Weissmann ◽  
Alex J. Raeber ◽  
Fabio Montrasio ◽  
Ivan Hegyi ◽  
Rico Frigg ◽  
...  

Following intracerebral or peripheral inoculation of mice with scrapie prions, infectivity accumulates first in the spleen and only later in the brain. In the spleen of scrapie–infected mice, prions were found in association with T and B lymphocytes and to a somewhat lesser degree with the stroma, which contains the follicular dendritic cells (FDCs) but not with non–B, non–T cells; strikingly, no infectivity was found in lymphocytes from blood of the same mice. Transgenic PrP knockout mice expressing PrP restricted to either B or T lymphocytes show no prion replication in the lymphoreticular system. Therefore, splenic lymphocytes either acquire prions from another source or replicate them in dependency on other PrP–expressing cells. The essential role of FDCs in prion replication in spleen was shown by treating mice with soluble lymphotoxin–β receptor, which led to disappearance of mature FDCs from the spleen and concomitantly abolished splenic prion accumulation and retarded neuroinvasion following intraperitoneal scrapie inoculation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rong Tang ◽  
Xiaomeng Liu ◽  
Chen Liang ◽  
Jie Hua ◽  
Jin Xu ◽  
...  

Background: The treatment modalities for pancreatic ductal adenocarcinoma (PDAC) are limited and unsatisfactory. Although many novel drugs targeting the tumor microenvironment, such as immune checkpoint inhibitors, have shown promising efficacy for some tumors, few of them significantly prolong the survival of patients with PDAC due to insufficient knowledge on the tumor microenvironment.Methods: A single-cell RNA sequencing (scRNA-seq) dataset and seven PDAC cohorts with complete clinical and bulk sequencing data were collected for bioinformatics analysis. The relative proportions of each cell type were estimated using the gene set variation analysis (GSVA) algorithm based on the signatures identified by scRNA-seq or previous literature.Results: A meta-analysis of 883 PDAC patients showed that neutrophils are associated with worse overall survival (OS) for PDAC, while CD8+ T cells, CD4+ T cells, and B cells are related to prolonged OS for PDAC, with marginal statistical significance. Seventeen cell categories were identified by clustering analysis based on single-cell sequencing. Among them, CD8+ T cells and NKT cells were universally exhausted by expressing exhaustion-associated molecular markers. Interestingly, signatures of CD8+ T cells and NKT cells predicted prolonged OS for PDAC only in the presence of “targets” for pyroptosis and ferroptosis induction. Moreover, a specific state of T cells with overexpression of ribosome-related proteins was associated with a good prognosis. In addition, the hematopoietic stem cell (HSC)-like signature predicted prolonged OS in PDAC. Weighted gene co-expression network analysis identified 5 hub genes whose downregulation may mediate the observed survival benefits of the HSC-like signature. Moreover, trajectory analysis revealed that myeloid cells evolutionarily consisted of 7 states, and antigen-presenting molecules and complement-associated genes were lost along the pseudotime flow. Consensus clustering based on the differentially expressed genes between two states harboring the longest pseudotime span identified two PDAC groups with prognostic differences, and more infiltrated immune cells and activated immune signatures may account for the survival benefits.Conclusion: This study systematically investigated the prognostic implications of the components of the PDAC tumor microenvironment by integrating single-cell sequencing and bulk sequencing, and future studies are expected to develop novel targeted agents for PDAC treatment.


2020 ◽  
Vol 21 (19) ◽  
pp. 7358
Author(s):  
Fiona A. Desland ◽  
Adília Hormigo

Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. Its aggressive nature is attributed partly to its deeply invasive margins, its molecular and cellular heterogeneity, and uniquely tolerant site of origin—the brain. The immunosuppressive central nervous system (CNS) and GBM microenvironments are significant obstacles to generating an effective and long-lasting anti-tumoral response, as evidenced by this tumor’s reduced rate of treatment response and high probability of recurrence. Immunotherapy has revolutionized patients’ outcomes across many cancers and may open new avenues for patients with GBM. There is now a range of immunotherapeutic strategies being tested in patients with GBM that target both the innate and adaptive immune compartment. These strategies include antibodies that re-educate tumor macrophages, vaccines that introduce tumor-specific dendritic cells, checkpoint molecule inhibition, engineered T cells, and proteins that help T cells engage directly with tumor cells. Despite this, there is still much ground to be gained in improving the response rates of the various immunotherapies currently being trialed. Through historical and contemporary studies, we examine the fundamentals of CNS immunity that shape how to approach immune modulation in GBM, including the now revamped concept of CNS privilege. We also discuss the preclinical models used to study GBM progression and immunity. Lastly, we discuss the immunotherapeutic strategies currently being studied to help overcome the hurdles of the blood–brain barrier and the immunosuppressive tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document