scholarly journals CBMS-7 IGF1/N-cadherin/Clusterin signaling axis mediates adaptive radioresistance of glioma stem cells

2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi3-vi3
Author(s):  
Satoru Osuka ◽  
Dan Zhu ◽  
Zhaobin Zhang ◽  
Chaoxi Li ◽  
Christian T Stackhouse ◽  
...  

Abstract Glioblastoma (GBM) is composed of a variety of tumor cell populations including those with stem cell properties, known as glioma stem cells (GSCs). GSCs are innately less sensitive to radiation than the tumor bulk and are believed to drive GBM formation and recurrence following repeated irradiation. However, it is unclear how GSCs adapt to avoid the toxicity of repeated irradiation used in clinical practice. We established radioresistant human and mouse GSCs by exposing them to repeated rounds of irradiation in order to uncover critical mediators of adaptive radioresistance. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by increased cell-cell adhesion, slower proliferation, an elevation of stemness properties and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs reduced their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of β-catenin at the cell surface, which decreased Wnt/ β-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. Restoration of wild type N-cadherin, but not mutant N-cad lacking β-catenin binding region, led to increased radioresistance in N-cadherin knockout GSCs, indicating the importance of the binding between N-cadherin and β-catenin. We also demonstrated that N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype can be reversed with picropodophyllin (PPP), a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation. Moreover, the elevation of N-cad and Clusterin are related to prognosis of GBM in the TCGA dataset. In conclusion, our data indicate that IGF1R inhibitor can block the N-cadherin-mediated resistance pathway. Our research provides a deeper understanding of adaptive radioresistance after repeated irradiation, and validates the IGF1/N-cadherin/β-catenin/Clusterin signaling axis as a novel target for radio-sensitization, which has direct therapeutic applicability.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii199-ii199
Author(s):  
Satoru Osuka ◽  
Dan Zhu ◽  
Zhaobin Zhang ◽  
Oltea Sampetrean ◽  
Jeffrey Olson ◽  
...  

Abstract Glioblastoma (GBM) is composed of heterogeneous tumor cell populations including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by increased cell-cell adhesion, slower proliferation, an elevation of stemness properties and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of b-catenin at the cell surface, which suppressed Wnt/ b-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. Restoration of wild type N-cadherin, but not mutant N-cad lacking b-catenin binding region, led to induce radioresistance in N-cadherin knockout GSCs, indicating the importance of the binding between N-cadherin and b-catenin. We also demonstrated that N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin (PPP), a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation. Moreover, the elevation of N-cad and Clusterin are related to prognosis of GBM in the TCGA dataset. In conclusion, our data indicate that IGF1R inhibitor can block the N-cadherin-mediated resistance pathway. Our study deepens our understanding of adaptive radioresistance during repeated irradiation in GBM, and validates the IGF1/N-cadherin/b-catenin/Clusterin signaling axis as a novel target for radio-sensitization, which has direct therapeutic applicability.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Zetao Chen ◽  
Yihong Chen ◽  
Yan Li ◽  
Weidong Lian ◽  
Kehong Zheng ◽  
...  

AbstractGlioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.


2013 ◽  
Author(s):  
Satoru Osuka ◽  
Oltea Sampetrean ◽  
Takatsune Shimizu ◽  
Isako Saga ◽  
Nobuyuki Onishi ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi247-vi247
Author(s):  
Bryan Day ◽  
Justin Lathia ◽  
Zara Bruce ◽  
Kathleen Ensbey ◽  
Yi Chieh Lim ◽  
...  

Abstract Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding alpha (α) subunit of the dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the vascular niche. Glycosylated αDG is also expressed highly on the most aggressive mesenchymal-like GBM tumour tissue. Furthermore, we found that DG acts to maintain a de-differentiated stem cell-like phenotype via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor not only as a structural element but also as a critical factor in the maintenance of GSCs in the GBM vascular niche.


2012 ◽  
Vol 209 (5) ◽  
pp. 895-901 ◽  
Author(s):  
Olivier Herault ◽  
Kristin J. Hope ◽  
Eric Deneault ◽  
Nadine Mayotte ◽  
Jalila Chagraoui ◽  
...  

The determinants of normal and leukemic stem cell self-renewal remain poorly characterized. We report that expression of the reactive oxygen species (ROS) scavenger glutathione peroxidase 3 (GPx3) positively correlates with the frequency of leukemia stem cells (LSCs) in Hoxa9+Meis1-induced leukemias. Compared with a leukemia with a low frequency of LSCs, a leukemia with a high frequency of LSCs showed hypomethylation of the Gpx3 promoter region, and expressed high levels of Gpx3 and low levels of ROS. LSCs and normal hematopoietic stem cells (HSCs) engineered to express Gpx3 short hairpin RNA (shRNA) were much less competitive in vivo than control cells. However, progenitor cell proliferation and differentiation was not affected by Gpx3 shRNA. Consistent with this, HSCs overexpressing Gpx3 were significantly more competitive than control cells in long-term repopulation experiments, and overexpression of the self-renewal genes Prdm16 or Hoxb4 boosted Gpx3 expression. In human primary acute myeloid leukemia samples, GPX3 expression level directly correlated with adverse prognostic outcome, revealing a potential novel target for the eradication of LSCs.


2021 ◽  
Author(s):  
Yue Cheng ◽  
Shijie Li ◽  
Yongying Hou ◽  
Weijun Wang ◽  
Ke Wang ◽  
...  

Abstract Background:The prognosis of malignant glioblastoma (GBM) is dismal despite advances in surgery, radiation and chemotherapy treatments. Thus, alternative therapy strategies are urgently needed. Antiangiogenic therapy for cancer offers the possibility of universal efficacy. However, preclinical and clinical studies suggest that this therapy using anti-VEGF drug Avastin (Bevacizumab) may lead to a pro-migratory phenotype in therapy resistant GBM and thus actively promote tumor invasion and recurrent tumor growth. Methods: An ultracentrifugation strategy was used to isolate glioma-derived sEVs under hypoxic or normoxic conditions. Transmission electron microscopy (TEM), Western blotting, and nanoparticle tracking analysis (NTA) were used to characterize these isolated particles. Cytochalasin D was added to disrupt cellular sEVs uptake. A tube formation assay was used to evaluate angiogenic activity, while ELISAs and Western blotting were used to assess the activated TGF-β signaling pathway. The effects of sEVs on glioma stem cells (GSCs) in vivo were evaluated using subcutaneous xenografts model system in nude mice. Immunofluorescence and immunohistochemical staining were set out to evaluate the pericyte-phenotype transition of GSCs.Results: In this present study, we showed that hypoxia could promote the release of sEVs by glioblastoma cells and hypoxia-induced glioma-derived sEVs could be taken up by GSCs. This internalization of sEVs promoted tumor growth in mouse Xenografts through the pericyte-phenotype transition of GSCs. We also demonstrated hypoxia-derived sEVs can efficiently deliver TGF-β1 to GSCs. The activated TGF-β signaling pathway mediated this kind of phenotype transition. In addition, combination of Ibrutinib and Bevacizumab showed more effective in targeting GBM. Conclusion: This present study provides a new interpretation to the failure of antiangiogenesis therapy in noncurative surgical resection of GBM, and discovers promising brain-specific therapeutic targets for this damaging tumor.


EBioMedicine ◽  
2021 ◽  
Vol 74 ◽  
pp. 103752
Author(s):  
Sara G. Pelaz ◽  
Myriam Jaraíz-Rodríguez ◽  
Andrea Álvarez-Vázquez ◽  
Rocío Talaverón ◽  
Laura García-Vicente ◽  
...  

2020 ◽  
Author(s):  
Jian Zang ◽  
Min-hua Zheng ◽  
Xiu-li Cao ◽  
Yi-zhe Zhang ◽  
Yu-fei Zhang ◽  
...  

Abstract BackgroundGlioma stem cells (GSCs) are glioma cells with stemness and are responsible for a variety of malignant behaviors of glioma. Evidence has shown that signals from tumor microenvironment (TME) enhance stemness of glioma cells, but the identity of the signaling molecules and underlying mechanisms have been incompletely elucidated.MethodsHuman samples and glioma cell lines were cultured in vitro to determine the effects of viral infection by sphere formation, qRT-PCR, Western blot, FACS and immunofluorescence; for in vivo analysis, mice subcutaneous tumor model was carried; while bioinformatics analysis and qRT-PCR were applied for further mechanistic studies.ResultsIn this study, we show that infection of patient-derived glioma cells with adenovirus (ADV) increases the formation of tumor spheres. ADV infection upregulated stem cell markers, and the resultant tumor spheres held the capacities of self-renewal and multi-lineage differentiation, and had stronger potential to form xenograft tumors in immune-compromised mice. ADV promoted GSC formation likely via TLR9, because TLR9 was upregulated after ADV infection, and knockdown of TLR9 reduced ADV-induced GSCs. Consistently, MYD88, as well as total STAT3 and phosphorylated (p-)STAT3, were also upregulated in ADV-induced GSCs. Knockdown of MYD88 or pharmaceutical inhibition of STAT3 attenuated stemness of ADV-induced GSCs. Moreover, we found that ADV infection upregulated lncRNA NEAT1, which is downstream to TLRs and play important roles in cancer stem cells via multiple mechanisms including strengthening STAT3 signaling. Indeed, knockdown of NEAT1 impaired stemness of ADV-induced GSCs. Lastly, we show that HMGB1, a damage associated molecular pattern (DAMP) that also triggers TLR signaling, upregulated stemness markers in glioma cells.ConclusionsIn summary, our data indicate that ADV, which has been developed as vectors for gene therapy and oncolytic virus, promotes the formation of GSCs via TLR9/NEAT1/STAT3 signaling.


2019 ◽  
Vol 18 ◽  
pp. 153601211987089 ◽  
Author(s):  
Po-An Tai ◽  
Yen-Lin Liu ◽  
Ya-Ting Wen ◽  
Chien-Min Lin ◽  
Thanh-Tuan Huynh ◽  
...  

Glioblastoma multiforme represents one of the deadliest brain tumor types, manifested by a high rate of recurrence and poor prognosis. The presence of glioma stem cells (GSCs) can repopulate the tumor posttreatment and resist therapeutics. A better understanding of GSC biology is essential for developing more effective interventions. We established a CD133 promoter-driven dual reporter, expressing green fluorescent protein (GFP) and firefly luciferase (CD133-LG), capable for in vitro and in vivo imaging of CD133+ GSCs. We first demonstrated the reporter enabled in vitro analyses of GSCs. DBTRG-05MG (Denver Brain Tumor Research Group 05) carrying CD133-LG (DBTRG-05MG-CD133-LG) system reported increased GFP/luciferase activities in neurospheres. Additionally, we identified and isolated CD133+/GFP+ cells with increased tumorigenic properties, stemness markers, Notch1, β-catenin, and Bruton’s tyrosine kinase (Btk). Furthermore, prolonged temozolomide (TMZ) treatment enriched GSCs (reflected by increased percentage of CD133+ cells). Subsequently, Btk inhibitor, ibrutinib, suppressed GSC generation and stemness markers. Finally, we demonstrated real-time evaluation of anti-GSC function of ibrutinib in vivo with TMZ-enriched GSCs. Tumorigenesis was noninvasively monitored by bioluminescence imaging and mice that received ibrutinib showed a significantly lower tumor burden, indicating ibrutinib as a potential GSC inhibitor. In conclusion, we established a dual optical imaging system which enables the identification of CD133+ GSCs and screening for anti-GSC drugs.


Sign in / Sign up

Export Citation Format

Share Document