scholarly journals Visual Rhetoric

Communication ◽  
2021 ◽  

Visual rhetoric is a relatively new area of study that emerged in the late 1900s when rhetoric scholars recognized the increasing centrality of the visual in contemporary culture. There is no consensus on the definition of visual rhetoric; different scholars use the term in different ways. Broadly, it refers to the analysis of the communicative and persuasive power of visual artifacts. These artifacts range from two-dimensional images such as photographs, political cartoons, and maps to moving images in film or television. They also include three-dimensional objects like murals, as well as places, spaces, and bodies. Although much scholarship on visual rhetoric focuses on the communicative aspects of visuals, there are also a number of studies that examine cultural practices of looking and interpreting. While visual rhetoric borrows from various methods and disciplines that also concern themselves with the visual, such as semiotics, aesthetics, and cultural studies, this bibliography focuses narrowly on the branch of study that emerged from US rhetorical studies within the discipline of communication in the 1970s. This bibliography begins with pieces that hail from other disciplines in order to recognize their influence in thinking about the rhetorical dimensions of visuals. From there, it moves to suggest general overviews and anthologies of this area of study, as well as some methods to evaluate images. Finally, the bibliography focuses on different forms of visual rhetoric that range from photographs to bodies.

Author(s):  
Zazil Reyes García

The growing field of visual rhetoric explores the communicative and persuasive power of the visual artifacts that surround us. This relatively new branch of rhetoric emerged in the late 20th century, disrupting a discipline that was traditionally concerned with the spoken and written word. The artifacts studied through the lens of visual rhetoric comprise visual images and objects that are human created and culturally meaningful. They include two-dimensional images, such as political cartoons and video advertising, and three-dimensional objects such as museums and murals. Visual rhetoric can also include the analysis of embodied performance and thus examine the body as argument. Although much of the scholarship focuses on the power of images in shaping people’s understanding of the world, there is also a recognition of the power of looking. Meaning does not reside in the images around us; we participate in its construction. To better understand visual rhetoric, it is important to review its emergence as an area of study, its definitions, and some of the recurring themes in the scholarship.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 8 ◽  
Author(s):  
Jason D. Fowlkes ◽  
Robert Winkler ◽  
Eva Mutunga ◽  
Philip D. Rack ◽  
Harald Plank

A promising 3D nanoprinting method, used to deposit nanoscale mesh style objects, is prone to non-linear distortions which limits the complexity and variety of deposit geometries. The method, focused electron beam-induced deposition (FEBID), uses a nanoscale electron probe for continuous dissociation of surface adsorbed precursor molecules which drives highly localized deposition. Three dimensional objects are deposited using a 2D digital scanning pattern—the digital beam speed controls deposition into the third, or out-of-plane dimension. Multiple computer-aided design (CAD) programs exist for FEBID mesh object definition but rely on the definition of nodes and interconnecting linear nanowires. Thus, a method is needed to prevent non-linear/bending nanowires for accurate geometric synthesis. An analytical model is derived based on simulation results, calibrated using real experiments, to ensure linear nanowire deposition to compensate for implicit beam heating that takes place during FEBID. The model subsequently compensates and informs the exposure file containing the pixel-by-pixel scanning instructions, ensuring nanowire linearity by appropriately adjusting the patterning beam speeds. The derivation of the model is presented, based on a critical mass balance revealed by simulations and the strategy used to integrate the physics-based analytical model into an existing 3D nanoprinting CAD program is overviewed.


Author(s):  
Masatomo Inui ◽  
Kouhei Nishimiya ◽  
Nobuyuki Umezu

Abstract Clearance is a basic parameter in the design of mechanical products, generally specified as the distance between two shape elements, for example, the width of a slot. This definition is unsuitable for evaluating the clearance during assembly or manufacturing tasks, where the depth information is also critical. In this paper, we propose a novel definition of clearance for the surface of three-dimensional objects. Unlike the typical methods used to define clearance, the proposed method can simultaneously handle the relationship between the width and depth in the clearance, and thus, obtain an intuitive understanding regarding the assembly and manufacturing capability of a product. Our definition is based on the accessibility cone of a point on the object’s surface; further, the peak angle of the accessibility cone corresponds to the clearance at this point. A computation method of the clearance is presented and the results of its application are demonstrated. Our method uses the rendering function of a graphics processing unit to compute the clearance. A large computation time necessary for the analysis is considered as a problem regarding the practical use of this clearance definition.


Author(s):  
Wei Zhao ◽  
Xiaoping Qian

Mathematical morphology provides a set-theoretic approach for spatial structure analysis and is particularly useful for describing the spatial relationship between a tool under motion and the part surface. However, its usage in three-dimension has so far been limited in part due to its computational complexity. This paper presents a multi-dexel based computer implementation of morphology operations. Three dimensional objects (tools and parts) are represented as collections of dexels (depth elements) in multiple directions. Morphology operations such as dilation and erosion are then converted to a series of 1D set operations in each direction. We show that our definition of multi-dexel is formal and our implementation is complete. We present our implementation results on three morphological applications: AFM image simulation, noise removal in 3D mesh, and NC path generation.


2021 ◽  
Vol 11 (22) ◽  
pp. 294-304
Author(s):  
Csaba Kutasi

The scientific definition of polyethylene terephthalate (PET) changed for polyester in the common language. It was first manufactured in 1928 and the production of the fibre version started in 1941. Nowadays, 70% of artificial textile raw materials are polyester fibres and a significant amount of plastic waste is generated at the end of the life cycle of polyester clothing and other end products. The injection moulding process introduced in the 1970s made it possible to design and produce three-dimensional objects, and this resulted in the spreading of light, transparent, resistant and non-fragile PET bottles. Given that the degradation of PET is more than 450 years, the increase of recycling and reprocessing is an urgent pressure.


Author(s):  
Robert D. Nelson ◽  
Sharon R. Hasslen ◽  
Stanley L. Erlandsen

Receptors are commonly defined in terms of number per cell, affinity for ligand, chemical structure, mode of attachment to the cell surface, and mechanism of signal transduction. We propose to show that knowledge of spatial distribution of receptors on the cell surface can provide additional clues to their function and components of functional control.L-selectin and Mac-1 denote two receptor populations on the neutrophil surface that mediate neutrophil-endothelial cell adherence interactions and provide for targeting of neutrophil recruitment to sites of inflammation. We have studied the spatial distributions of these receptors using LVSEM and backscatter imaging of isolated human neutrophils stained with mouse anti-receptor (primary) antibody and goat anti-mouse (secondary) antibody conjugated to 12 nm colloidal gold. This combination of techniques provides for three-dimensional analysis of the expression of these receptors on different surface membrane domains of the neutrophil: the ruffles and microvilli that project from the cell surface, and the cell body between these projecting structures.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 72
Author(s):  
Luca Tonti ◽  
Alessandro Patti

Collision between rigid three-dimensional objects is a very common modelling problem in a wide spectrum of scientific disciplines, including Computer Science and Physics. It spans from realistic animation of polyhedral shapes for computer vision to the description of thermodynamic and dynamic properties in simple and complex fluids. For instance, colloidal particles of especially exotic shapes are commonly modelled as hard-core objects, whose collision test is key to correctly determine their phase and aggregation behaviour. In this work, we propose the Oriented Cuboid Sphere Intersection (OCSI) algorithm to detect collisions between prolate or oblate cuboids and spheres. We investigate OCSI’s performance by bench-marking it against a number of algorithms commonly employed in computer graphics and colloidal science: Quick Rejection First (QRI), Quick Rejection Intertwined (QRF) and a vectorized version of the OBB-sphere collision detection algorithm that explicitly uses SIMD Streaming Extension (SSE) intrinsics, here referred to as SSE-intr. We observed that QRI and QRF significantly depend on the specific cuboid anisotropy and sphere radius, while SSE-intr and OCSI maintain their speed independently of the objects’ geometry. While OCSI and SSE-intr, both based on SIMD parallelization, show excellent and very similar performance, the former provides a more accessible coding and user-friendly implementation as it exploits OpenMP directives for automatic vectorization.


2021 ◽  
Vol 13 (8) ◽  
pp. 1537
Author(s):  
Antonio Adán ◽  
Víctor Pérez ◽  
José-Luis Vivancos ◽  
Carolina Aparicio-Fernández ◽  
Samuel A. Prieto

The energy monitoring of heritage buildings has, to date, been governed by methodologies and standards that have been defined in terms of sensors that record scalar magnitudes and that are placed in specific positions in the scene, thus recording only some of the values sampled in that space. In this paper, however, we present an alternative to the aforementioned technologies in the form of new sensors based on 3D computer vision that are able to record dense thermal information in a three-dimensional space. These thermal computer vision-based technologies (3D-TCV) entail a revision and updating of the current building energy monitoring methodologies. This paper provides a detailed definition of the most significant aspects of this new extended methodology and presents a case study showing the potential of 3D-TCV techniques and how they may complement current techniques. The results obtained lead us to believe that 3D computer vision can provide the field of building monitoring with a decisive boost, particularly in the case of heritage buildings.


i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952098231
Author(s):  
Masakazu Ohara ◽  
Juno Kim ◽  
Kowa Koida

Perceiving the shape of three-dimensional objects is essential for interacting with them in daily life. If objects are constructed from different materials, can the human visual system accurately estimate their three-dimensional shape? We varied the thickness, motion, opacity, and specularity of globally convex objects rendered in a photorealistic environment. These objects were presented under either dynamic or static viewing condition. Observers rated the overall convexity of these objects along the depth axis. Our results show that observers perceived solid transparent objects as flatter than the same objects rendered with opaque reflectance properties. Regional variation in local root-mean-square image contrast was shown to provide information that is predictive of perceived surface convexity.


2002 ◽  
Vol 58 (3) ◽  
pp. 457-462 ◽  
Author(s):  
F. Liebau ◽  
H. Küppers

To compare densities of inorganic high-pressure phases their molal volumes or specific gravities are usually employed, whereas for zeolites and other microporous materials the so-called framework density, FD, is applied. The definition of FD, which refers only to phases with three-dimensional tetrahedron frameworks, is extended to a `generalized framework density' d f, which is independent of the dimensionality of the framework and the coordination number(s) of the framework cations. In this paper the anion packing density, d ap, is introduced as a new quantity which is not only applicable to any inorganic phase but, in contrast to FD and d f, also allows quantitative comparisons to be made for crystalline inorganic phases of any kind. The anion packing density can readily be calculated if the volume and content of the unit cell and the radii of the anions of a phase are known. From d ap values calculated for high-pressure silica polymorphs studied under very high pressure, it is concluded that Shannon–Prewitt effective ionic radii do not sufficiently take into account the compressibility of the anions.


Sign in / Sign up

Export Citation Format

Share Document