scholarly journals Antimicrobial Susceptibility of Acinetobacter calcoaceticus–Acinetobacter baumannii Complex and Stenotrophomonas maltophilia Clinical Isolates: Results From the SENTRY Antimicrobial Surveillance Program (1997–2016)

2019 ◽  
Vol 6 (Supplement_1) ◽  
pp. S34-S46 ◽  
Author(s):  
Ana C Gales ◽  
Harald Seifert ◽  
Deniz Gur ◽  
Mariana Castanheira ◽  
Ronald N Jones ◽  
...  

Abstract Background Acinetobacter calcoaceticus–A. baumannii (Acb) complex and Stenotrophomonas maltophilia represent frequent causes of hospital-acquired infections. We evaluated the frequency and resistance rates of Acb complex and S. maltophilia isolates from medical centers enrolled in the SENTRY Program. Methods A total of 13 752 Acb complex and 6467 S. maltophilia isolates were forwarded to a monitoring laboratory by 259 participating sites from the Asia-Pacific region, Latin America, Europe, and North America between 1997 and 2016. Confirmation of species identification and antimicrobial susceptibility testing were performed using conventional methods and/or matrix-assisted laser desorption ionization–time of flight mass spectrometry and the broth microdilution method, respectively. Antimicrobial susceptibility results were interpreted by CLSI and EUCAST 2018 criteria. Results Acb complex and S. maltophilia were most frequently isolated from patients hospitalized with pneumonia (42.9% and 55.8%, respectively) and bloodstream infections (37.3% and 33.8%, respectively). Colistin and minocycline were the most active agents against Acb complex (colistin MIC50/90, ≤0.5/2 mg/L; 95.9% susceptible) and S. maltophilia (minocycline MIC50/90, ≤1/2 mg/L; 99.5% susceptible) isolates, respectively. Important temporal decreases in susceptibility rates among Acb complex isolates were observed for all antimicrobial agents in all regions. Rates of extensively drug-resistant Acb complex rates were highest in Europe (66.4%), followed by Latin America (61.5%), Asia-Pacific (56.9%), and North America (38.8%). Among S. maltophilia isolates, overall trimethoprim-sulfamethoxazole (TMP-SMX) susceptibility rates decreased from 97.2% in 2001–2004 to 95.7% in 2013–2016, but varied according to the geographic region. Conclusions We observed important reductions of susceptibility rates to all antimicrobial agents among Acb complex isolates obtained from all geographic regions. In contrast, resistance rates to TMP-SMX among S. maltophilia isolates remained low and relatively stable during the study period.

2019 ◽  
Vol 6 (Supplement_1) ◽  
pp. S14-S23 ◽  
Author(s):  
Helio S Sader ◽  
Rodrigo E Mendes ◽  
Jennifer Le ◽  
Gerald Denys ◽  
Robert K Flamm ◽  
...  

Abstract Background The SENTRY Antimicrobial Surveillance Program monitors the frequency of occurrence and antimicrobial susceptibility of organisms from various infection types worldwide. In this investigation, we evaluated the antimicrobial susceptibility of Streptococcus pneumoniae isolates collected worldwide over 20 years (1997–2016). Methods A total of 65 993 isolates were consecutively collected (1 per infection episode) from North America (NA; n = 34 626; 2 nations), Europe (EUR; n = 19 123; 23 nations), the Asia-Pacific region (APAC; n = 7111; 10 nations), and Latin America (LATAM; n = 5133; 7 nations) and tested for susceptibility using reference broth microdilution methods. Resistant subgroups included multidrug-resistant (MDR; nonsusceptible to ≥3 classes of agents) and extensively drug-resistant (XDR; nonsusceptible to ≥5 classes). Results The isolates were collected primarily from respiratory tract infections (77.3%), and 25.4% were from pediatric patients. Penicillin susceptibility (≤0.06 mg/L) rates varied from 70.7% in EUR to 52.4% in APAC for all years combined. In NA, there was a slight improvement in susceptibility for the first few years of the program, from 66.5% in 1997–1998 to 69.4% in 1999–2000, followed by a decline until 2011–2012 (57.0%). Similar declines in penicillin susceptibility rates were observed in all regions, with the lowest rates of 67.3% in EUR (2011–2012), 41.6% in the APAC region (2007–2008), and 48.2% in LATAM (2013–2014). These declines were followed by improved susceptibility rates in all regions in later program years, with susceptibility rates of 55.6% to 71.8% in 2015–2016 (65.8% overall). Susceptibility rates to ceftriaxone, erythromycin, clindamycin, tetracycline, and trimethoprim-sulfamethoxazole followed a similar pattern, with a decrease in the first 12–14 years and a continued increase in the last 6–8 years of the program. MDR and XDR frequencies were highest in APAC (49.8% and 17.3% overall, respectively) and lowest in LATAM (10.8% and 1.9% overall, respectively). The most active agents for MDR/XDR isolates were ceftaroline (99.7%/99.1% susceptible), tigecycline (96.8%/95.9% susceptible), linezolid (100.0%/100.0% susceptible), and vancomycin (100.0%/100.0% susceptible). Conclusions S. pneumoniae susceptibility to many antibiotics increased in all regions in the last few years, and these increases may be related to PCV13 immunization, which was introduced in 2010.


2019 ◽  
Vol 6 (Supplement_1) ◽  
pp. S54-S62 ◽  
Author(s):  
Michael A Pfaller ◽  
Martin Cormican ◽  
Robert K Flamm ◽  
Rodrigo E Mendes ◽  
Ronald N Jones

Abstract Background The SENTRY Antimicrobial Surveillance Program was established in 1997 and presently encompasses more than 750 000 bacterial isolates from over 400 medical centers worldwide. Among these pathogens, enterococci represents a prominent cause of bloodstream (BSIs), intra-abdominal (IAIs), skin and skin structure, and urinary tract infections (UTIs). In the present study, we reviewed geographic and temporal trends in Enterococcus species and resistant phenotypes identified throughout the SENTRY Program. Methods From 1997 to 2016, a total of 49 491 clinically significant enterococci isolates (15 species) were submitted from 298 medical centers representing the Asia-Pacific (APAC), European, Latin American (LATAM), and North American (NA) regions. Bacteria were identified by standard algorithms and matrix-assisted laser desorption ionization–time of flight mass spectrometry. Susceptibility (S) testing was performed by reference broth microdilution methods and interpreted using Clinical and Laboratory Standards Institute/US Food and Drug Administration and European Committee on Antimicrobial Susceptibility Testing criteria. Results The most common Enterococcus species in all 4 regions were Enterococcus faecalis (64.7%) and E. faecium (EFM; 29.0%). Enterococci accounted for 10.7% of BSIs in NA and was most prominent as a cause of IAIs (24.0%) in APAC and of UTIs (19.8%) in LATAM. A steady decrease in the susceptibility to ampicillin and vancomycin was observed in all regions over the 20-year interval. Vancomycin-resistant enterococci (VRE) accounted for more than 8% of enterococcal isolates in all regions and was most common in NA (21.6%). Among the 7615 VRE isolates detected, 89.1% were the VanA phenotype (91.0% EFM) and 10.9% were VanB. Several newer antimicrobial agents demonstrated promising activity against VRE, including daptomycin (99.6–100.0% S), linezolid (98.0%–99.6% S), oritavancin (92.2%–98.3% S), tedizolid (99.5%–100.0% S), and tigecycline (99.4%–100.0% S). Conclusions Enterococci remained a prominent gram-positive pathogen in the SENTRY Program from 1997 through 2016. The overall frequency of VRE was 15.4% and increased over time in all monitored regions. Newly released agents with novel mechanisms of action show promising activity against VRE.


2015 ◽  
Vol 53 (4) ◽  
pp. 1286-1293 ◽  
Author(s):  
Sue C. Kehl ◽  
Michael J. Dowzicky

The Tigecycline Evaluation and Surveillance Trial (TEST) was designed to monitor susceptibility to commonly used antimicrobial agents among important pathogens. We report here on susceptibility among Gram-negative pathogens collected globally from pediatric patients between 2004 and 2012. Antimicrobial susceptibility was determined using guidelines published by the Clinical and Laboratory Standards Institute (CLSI). MostEnterobacteriaceaeshowed high rates of susceptibility (>95%) to amikacin, tigecycline, and the carbapenems (imipenem and meropenem); 90.8% ofAcinetobacter baumanniiisolates were susceptible to minocycline, and susceptibility rates were highest in North America, Europe, and Asia/Pacific Rim. Amikacin was the most active agent againstPseudomonas aeruginosa(90.4% susceptibility), with susceptibility rates being highest in North America. Extended-spectrum β-lactamases (ESBLs) were reported for 11.0% ofEscherichia coliisolates and 24.2% ofKlebsiella pneumoniaeisolates globally, with rates reaching as high as 25.7% in the Middle East and >43% in Africa and Latin America, respectively. Statistically significant (P< 0.01) differences in susceptibility rates were noted between pediatric age groups (1 to 5 years, 6 to 12 years, or 13 to 17 years of age), globally and in some regions, for all pathogens exceptHaemophilus influenzae. Significant (P< 0.01) differences were reported for all pathogens globally and in most regions, considerably more frequently, when pediatric and adult susceptibility results were compared. Amikacin, tigecycline, and the carbapenems were activein vitroagainst most Gram-negative pathogens collected from pediatric patients;A. baumanniiandP. aeruginosawere susceptible to fewer antimicrobial agents. Susceptibility rates among isolates from pediatric patients were frequently different from those among isolates collected from adults.


2007 ◽  
Vol 70 (3) ◽  
pp. 736-738 ◽  
Author(s):  
M. NORSTRÖM ◽  
G. JOHNSEN ◽  
M. HOFSHAGEN ◽  
H. THARALDSEN ◽  
H. KRUSE

Antimicrobial susceptibility in Campylobacter jejuni collected from the environment outside four broiler houses (n = 63) and from the environment inside these broiler houses (including broiler droppings) (n = 36) from May to September 2004 was studied and compared with isolates from Norwegian broilers analyzed within the frame of the Norwegian monitoring program of antimicrobial resistance in feed, food, and animals (NORM-VET) in 2004 (n = 75). The MICs of oxytetracycline, ampicillin, erythromycin, gentamicin, enrofloxacin, and nalidixic acid were obtained by the broth microdilution method VetMIC. The present study, which to our knowledge is the first Norwegian study on the occurrence of antimicrobial resistance in Campylobacter spp. from the environment of broiler houses, revealed a very low occurrence of antimicrobial resistance in C. jejuni from the broilers and broiler house environments studied. All isolates originating from the four broiler houses studied were susceptible to all the antimicrobial agents tested, except for one isolate from the outdoor environment (courtyard soil), which was resistant to oxytetracycline (MIC, 8 mg/liter). For the isolates from broilers (NORM-VET), low prevalences of resistance to oxytetracycline (1.3%) and ampicillin (4%) were observed. No quinolone resistance was observed. The results for the broiler isolates are in agreement with the earlier findings of a very low prevalence of resistance in Campylobacter from broilers in Norway, which reflects the low usage of antimicrobials in Norwegian broiler production. Furthermore, the present data are in accordance with antimicrobial susceptibility data for C. jejuni from domestically acquired human cases.


2019 ◽  
Vol 67 (4) ◽  
pp. 489-498
Author(s):  
Dolores Cid ◽  
José Francisco Fernández-Garayzábal ◽  
Chris Pinto ◽  
Lucas Domínguez ◽  
Ana Isabel Vela

Pasteurella multocida is responsible for economically important diseases in sheep and pigs. Antimicrobial susceptibility studies are essential for initiating rational and effective empirical therapy of P. multocida infections. In this study we investigated the antimicrobial susceptibility to 18 antimicrobial agents of 156 clinical isolates of P. multocida from sheep (n = 87) and pigs (n = 69) using the microdilution method. Both sheep and pig isolates exhibited low levels of resistance (≤ 15%) to ceftiofur, gentamicin, neomycin, spectinomycin, chlortetracycline, tulathromycin, florfenicol, danofloxacin, and enrofloxacin and trimethoprim/sulphamethoxazole, high resistance rates (> 15% up to 50%) to oxytetracycline, tilmicosin, and tiamulin, and very high resistance rates (> 50%) to tylosin tartrate, clindamycin, and sulphadimethoxine. However, sheep isolates exhibited significantly lower percentages of resistance and lower MIC90 values (P < 0.05) than pig isolates for most of the antimicrobials tested. In addition, sheep isolates exhibited also significantly lower phenotypic antimicrobial resistance diversity (8 resistotypes vs. 30 resistotypes). LAC-LIN-SUL-MAC was the resistotype most frequently detected in sheep (39.1%) and LIN-SUL-MAC in pig isolates (26.1%). The differences in susceptibility patterns could be influenced by the lower use of antimicrobials in the small ruminant industry compared with the pig farming industry.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Michael A. Pfaller ◽  
Michael D. Huband ◽  
Paul R. Rhomberg ◽  
Robert K. Flamm

ABSTRACT Omadacycline is a broad-spectrum aminomethylcycline in late-stage clinical development for the treatment of acute bacterial skin and skin structure infections and community-acquired pneumonia as an oral and an intravenous once-daily formulation. In this study, omadacycline and comparators were tested against 69,246 nonduplicate bacterial isolates collected prospectively during 2010 and 2011 from medical centers in Asia-Pacific (11,397 isolates), Europe (23,490 isolates), Latin America (8,038 isolates), and North America (26,321 isolates). Omadacycline was tested by broth microdilution following Clinical and Laboratory Standards Institute M07-A10 (2015) methods. A total of 99.9% of Staphylococcus aureus isolates were inhibited by ≤2 μg/ml of omadacycline (MIC50/90, 0.12/0.25 μg/ml), including 100.0% of methicillin-susceptible S. aureus isolates and 99.8% of methicillin-resistant S. aureus isolates. Omadacycline potencies were comparable for Streptococcus pneumoniae (MIC50/90, 0.06/0.06 μg/ml), viridans group streptococci (MIC50/90, 0.06/0.12 μg/ml), and beta-hemolytic streptococci (MIC50/90, 0.06/0.12 μg/ml) regardless of species and susceptibility to penicillin. Omadacycline was active against Enterobacteriaceae and was most active against Escherichia coli (MIC50/90, 0.5/2 μg/ml), Enterobacter aerogenes (MIC50/90, 2/4 μg/ml), Klebsiella oxytoca (MIC50/90, 1/4 μg/ml), and Citrobacter spp. (MIC50/90, 1/4 μg/ml). Omadacycline was active against Haemophilus influenzae (MIC50/90, 1/1 μg/ml) regardless of β-lactamase status and against Moraxella catarrhalis (MIC50/90, 0.12/0.25 μg/ml). The potent activity of omadacycline against Gram-positive and Gram-negative bacteria indicates that omadacycline merits further study in serious infections in which multidrug resistance and mixed Gram-positive and Gram-negative infections may be a concern.


Sign in / Sign up

Export Citation Format

Share Document