scholarly journals Global Assessment of Antimicrobial Susceptibility among Gram-Negative Organisms Collected from Pediatric Patients between 2004 and 2012: Results from the Tigecycline Evaluation and Surveillance Trial

2015 ◽  
Vol 53 (4) ◽  
pp. 1286-1293 ◽  
Author(s):  
Sue C. Kehl ◽  
Michael J. Dowzicky

The Tigecycline Evaluation and Surveillance Trial (TEST) was designed to monitor susceptibility to commonly used antimicrobial agents among important pathogens. We report here on susceptibility among Gram-negative pathogens collected globally from pediatric patients between 2004 and 2012. Antimicrobial susceptibility was determined using guidelines published by the Clinical and Laboratory Standards Institute (CLSI). MostEnterobacteriaceaeshowed high rates of susceptibility (>95%) to amikacin, tigecycline, and the carbapenems (imipenem and meropenem); 90.8% ofAcinetobacter baumanniiisolates were susceptible to minocycline, and susceptibility rates were highest in North America, Europe, and Asia/Pacific Rim. Amikacin was the most active agent againstPseudomonas aeruginosa(90.4% susceptibility), with susceptibility rates being highest in North America. Extended-spectrum β-lactamases (ESBLs) were reported for 11.0% ofEscherichia coliisolates and 24.2% ofKlebsiella pneumoniaeisolates globally, with rates reaching as high as 25.7% in the Middle East and >43% in Africa and Latin America, respectively. Statistically significant (P< 0.01) differences in susceptibility rates were noted between pediatric age groups (1 to 5 years, 6 to 12 years, or 13 to 17 years of age), globally and in some regions, for all pathogens exceptHaemophilus influenzae. Significant (P< 0.01) differences were reported for all pathogens globally and in most regions, considerably more frequently, when pediatric and adult susceptibility results were compared. Amikacin, tigecycline, and the carbapenems were activein vitroagainst most Gram-negative pathogens collected from pediatric patients;A. baumanniiandP. aeruginosawere susceptible to fewer antimicrobial agents. Susceptibility rates among isolates from pediatric patients were frequently different from those among isolates collected from adults.

2007 ◽  
Vol 55 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Angela Lacombe-Antoneli ◽  
S. Píriz ◽  
S. Vadillo

The in vitro antimicrobial susceptibility of Gram-negative anaerobic bacilli commonly isolated from footrot in goats was studied. A total of 97 isolates belonging to the genera Dichelobacter, Fusobacterium, Prevotella, Porphyromonas and Bacteroides, obtained from clinical cases of footrot in south-western Spain between March 2000 and May 2001, were tested against 25 antimicrobial agents comprising β-lactams, aminoglycosides, macrolides, chloramphenicol, quinolones, lincosamides, sulphonamides and tetracyclines in order to optimise antibiotic treatment of this disease in goats. β-lactams, tetracyclines and metronidazole displayed the highest in vitro efficacy against the species involved in the pathogenesis of footrot.


2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S250-S250
Author(s):  
Kanokporn Mongkolrattanothai ◽  
Leslie Stach ◽  
Regina Orbach

Abstract Background The rise of antimicrobial resistance among gram-negative (GN) pathogens has been dramatic nationally. Delayed initiation of active antimicrobial agents has been associated with poor outcomes. We aimed at evaluating the prevalence and treatment of multi-drug-resistant gram-negative (MDR-GN) bacteremia in our pediatric patients. Methods All episodes of GN bacteremia from 2017–2018 at our institution were retrospectively reviewed. GN defined as MDR in our study were carbapenem-resistant organisms (CRO), extended-spectrum β-lactamase (ESBL) producers, and GN that were resistant to cefepime and ≥2 classes of non-cephalosporin antimicrobial agents. Stenotrophomonas maltophilia was excluded. Ineffective empirical treatment (IET) is defined as an initial antibiotic regimen that is not active against the identified pathogen[s] based on in vitro susceptibility testing results. Results A total of 292 episodes of GN bacteremia were identified and 6 S. maltophilia were excluded. Of these, 29 bacteremic episodes in 26 patients were caused by MDR-GN organisms including 18 ESBL, 7 CRO, 1 ESBL and CRO, 3 non-ESBL/non-CRO cefepime-resistant MDR-GN. None of the CRO had carbapenemase genes detected. However, there was a patient with multiple sites of infection simultaneously with non-NDM CR Acinetobacter bacteremia and NDM-mediated CR-Klebsiella ventriculitis. The annual rate of MDR-GN bacteremia increased from 8% in 2017 to 12% in 2018. Almost half (48%) of episodes were community onset. Among these, all but one had underlying medical conditions with hospital exposure and most patients had central venous devices at the time of infection. 52% (15/29) episodes of MDR-GN bacteremia had IET. Despite IET, 47% (7/15) had negative blood cultures prior to initiation of effective therapy (6 ESBL and 1 P. aeruginosa). Various antibiotic regimens were used for CRO therapy as shown in Table 1. Conclusion In our institution, MDR-GN infection is increasing. As such, empiric meropenem is currently recommended in BMT or neutropenic patients with suspected sepsis. However, empiric meropenem must be used judiciously as its widely use will lead to more selection of MDR pathogens. It is essential to continue monitoring of these MDR-GN to guide appropriate empiric regimens. Disclosures All authors: No reported disclosures.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Michael A. Pfaller ◽  
Michael D. Huband ◽  
Paul R. Rhomberg ◽  
Robert K. Flamm

ABSTRACT Omadacycline is a broad-spectrum aminomethylcycline in late-stage clinical development for the treatment of acute bacterial skin and skin structure infections and community-acquired pneumonia as an oral and an intravenous once-daily formulation. In this study, omadacycline and comparators were tested against 69,246 nonduplicate bacterial isolates collected prospectively during 2010 and 2011 from medical centers in Asia-Pacific (11,397 isolates), Europe (23,490 isolates), Latin America (8,038 isolates), and North America (26,321 isolates). Omadacycline was tested by broth microdilution following Clinical and Laboratory Standards Institute M07-A10 (2015) methods. A total of 99.9% of Staphylococcus aureus isolates were inhibited by ≤2 μg/ml of omadacycline (MIC50/90, 0.12/0.25 μg/ml), including 100.0% of methicillin-susceptible S. aureus isolates and 99.8% of methicillin-resistant S. aureus isolates. Omadacycline potencies were comparable for Streptococcus pneumoniae (MIC50/90, 0.06/0.06 μg/ml), viridans group streptococci (MIC50/90, 0.06/0.12 μg/ml), and beta-hemolytic streptococci (MIC50/90, 0.06/0.12 μg/ml) regardless of species and susceptibility to penicillin. Omadacycline was active against Enterobacteriaceae and was most active against Escherichia coli (MIC50/90, 0.5/2 μg/ml), Enterobacter aerogenes (MIC50/90, 2/4 μg/ml), Klebsiella oxytoca (MIC50/90, 1/4 μg/ml), and Citrobacter spp. (MIC50/90, 1/4 μg/ml). Omadacycline was active against Haemophilus influenzae (MIC50/90, 1/1 μg/ml) regardless of β-lactamase status and against Moraxella catarrhalis (MIC50/90, 0.12/0.25 μg/ml). The potent activity of omadacycline against Gram-positive and Gram-negative bacteria indicates that omadacycline merits further study in serious infections in which multidrug resistance and mixed Gram-positive and Gram-negative infections may be a concern.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Suzannah M. Schmidt-Malan ◽  
Avisya J. Mishra ◽  
Ammara Mushtaq ◽  
Cassandra L. Brinkman ◽  
Robin Patel

ABSTRACT Understanding which antimicrobial agents are likely to be active against Gram-negative bacilli can guide selection of antimicrobials for empirical therapy as mechanistic rapid diagnostics are adopted. In this study, we determined the MICs of a novel β-lactam–β-lactamase inhibitor combination, imipenem-relebactam, along with ceftolozane-tazobactam, imipenem, ertapenem, meropenem, ceftriaxone, and cefepime, against 282 drug-resistant isolates of Gram-negative bacilli. For isolates harboring blaKPC (n = 110), the addition of relebactam to imipenem lowered the MIC50/MIC90 from 16/>128 μg/ml for imipenem alone to 0.25/1 μg/ml. For isolates harboring blaCTX-M (n = 48), the MIC50/MIC90 of ceftolozane-tazobactam were 0.5/16 μg/ml (83% susceptible). For isolates harboring blaCMY-2 (n = 17), the MIC50/MIC90 of ceftolozane-tazobactam were 4/8 μg/ml (47% susceptible). Imipenem-relebactam was active against most KPC-producing (but not NDM- or IMP-producing) Enterobacteriaceae and is an encouraging addition to the present antibiotic repertoire.


2015 ◽  
Vol 60 (1) ◽  
pp. 343-347 ◽  
Author(s):  
Douglas J. Biedenbach ◽  
Richard A. Alm ◽  
Sushmita D. Lahiri ◽  
Edina Reiszner ◽  
Daryl J. Hoban ◽  
...  

ABSTRACTCeftaroline, the active metabolite of the prodrug ceftaroline-fosamil, is an advanced-generation cephalosporin with activity against methicillin-resistantStaphylococcus aureus(MRSA). This investigation providesin vitrosusceptibility data for ceftaroline against 1,971S. aureusisolates collected in 2012 from seven countries (26 centers) in the Asia-Pacific region as part of the Assessing Worldwide Antimicrobial Resistance and Evaluation (AWARE) program. Broth microdilution as recommended by the CLSI was used to determine susceptibility. In all, 62% of the isolates studied were MRSA, and the ceftaroline MIC90for allS. aureusisolates was 2 μg/ml (interpretive criteria: susceptible, ≤1 μg/ml). The overall ceftaroline susceptibility rate forS. aureuswas 86.9%, with 100% of methicillin-sensitiveS. aureusisolates and 78.8% of MRSA isolates susceptible to this agent. The highest percentages of ceftaroline-nonsusceptible MRSA isolates came from China (47.6%), all of which showed intermediate susceptibility, and Thailand (37.1%), where over half (52.8%) of isolates were resistant to ceftaroline (MIC, 4 μg/ml). Thirty-eight ceftaroline-nonsusceptible isolates (MIC values of 2 to 4 μg/ml) were selected for molecular characterization. Among the isolates analyzed, sequence type 5 (ST-5) was the most common sequence type encountered; however, all isolates analyzed from Thailand were ST-228. Penicillin-binding protein 2a (PBP2a) substitution patterns varied by country, but all isolates from Thailand had the Glu239Lys substitution, and 12 of these also carried an additional Glu447Lys substitution. Ceftaroline-fosamil is a useful addition to the antimicrobial agents that can be used to treatS. aureusinfections. However, with the capability of this species to develop resistance to new agents, it is important to recognize and monitor regional differences in trends as they emerge.


2016 ◽  
Vol 60 (8) ◽  
pp. 4490-4500 ◽  
Author(s):  
Krystyna M. Kazmierczak ◽  
Douglas J. Biedenbach ◽  
Meredith Hackel ◽  
Sharon Rabine ◽  
Boudewijn L. M. de Jonge ◽  
...  

ABSTRACTTheKlebsiella pneumoniaecarbapenemase (KPC), first described in the United States in 1996, is now a widespread global problem in several Gram-negative species. A worldwide surveillance study collected Gram-negative pathogens from 202 global sites in 40 countries during 2012 to 2014 and determined susceptibility to β-lactams and other class agents by broth microdilution testing. Molecular mechanisms of β-lactam resistance among carbapenem-nonsusceptibleEnterobacteriaceaeandPseudomonas aeruginosawere determined using PCR and sequencing. Genes encoding KPC enzymes were found in 586 isolates from 22 countries (76 medical centers), including countries in the Asia-Pacific region (32 isolates), Europe (264 isolates), Latin America (210 isolates), and the Middle East (19 isolates, Israel only) and the United States (61 isolates). The majority of isolates wereK. pneumoniae(83.4%); however, KPC was detected in 13 additional species. KPC-2 (69.6%) was more common than KPC-3 (29.5%), with regional variation observed. A novel KPC variant, KPC-18 (KPC-3[V8I]), was identified during the study. Few antimicrobial agents tested remained effectivein vitroagainst KPC-producing isolates, with ceftazidime-avibactam (MIC90, 4 μg/ml), aztreonam-avibactam (MIC90, 0.5 μg/ml), and tigecycline (MIC90, 2 μg/ml) retaining the greatest activity againstEnterobacteriaceaecocarrying KPC and other β-lactamases, whereas colistin (MIC90, 2 μg/ml) demonstrated the greatestin vitroactivity against KPC-positiveP. aeruginosa. This analysis of surveillance data demonstrated that KPC is widely disseminated. KPC was found in multiple species ofEnterobacteriaceaeandP. aeruginosaand has now become a global problem.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Meredith A. Hackel ◽  
Masakatsu Tsuji ◽  
Yoshinori Yamano ◽  
Roger Echols ◽  
James A. Karlowsky ◽  
...  

ABSTRACT Cefiderocol (formerly S-649266) is an investigational siderophore cephalosporin. Iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB) was prepared according to the Clinical and Laboratory Standards Institute (CLSI) protocol and used to perform broth microdilution testing of cefiderocol against a 2014-2015 collection of clinical isolates of Gram-negative bacilli from North America (n = 4,239) and Europe (n = 4,966). The concentrations of cefiderocol inhibiting 90% of isolates tested (MIC90s) were 0.5 μg/ml (North America; n = 3,007) and 1 μg/ml (Europe; n = 3,080) for all isolates of Enterobacteriaceae; 1 μg/ml (North America; n = 30) and 4 μg/ml (Europe; n = 139) for meropenem-nonsusceptible (MIC ≥ 2 μg/ml) isolates of Enterobacteriaceae; 0.5 μg/ml for both North American (n = 765) and European (n = 765) isolates of Pseudomonas aeruginosa; 0.5 μg/ml (North America; n = 151) and 1 μg/ml (Europe; n = 202) for meropenem-nonsusceptible (MIC ≥ 4 μg/ml) isolates of P. aeruginosa; 1 μg/ml for both North American (n = 309) and European (n = 839) isolates of all Acinetobacter baumannii strains as well as for both North American (n = 173) and European (n = 595) isolates of meropenem-nonsusceptible A. baumannii; and 0.5μg/ml (North America; n = 152) and 0.25 μg/ml (Europe; n = 276) for isolates of Stenotrophomonas maltophilia. MICs of cefiderocol were ≤4 μg/ml for 99.9% (6,078/6,087) of all Enterobacteriaceae, 97.0% (164/169) of meropenem-nonsusceptible Enterobacteriaceae, 99.9% (1,529/1,530) of all P. aeruginosa isolates, 100% (353/353) of meropenem-nonsusceptible P. aeruginosa isolates, 97.6% (1,120/1,148) of all A. baumannii isolates, 96.9% (744/768) of meropenem-nonsusceptible A. baumannii isolates, 100% of isolates of S. maltophilia (428/428) and 93.8% of isolates of Burkholderia cepecia (11/12). We conclude that cefiderocol demonstrated potent in vitro activity against a recent collection of clinical isolates of commonly encountered Gram-negative bacilli, including carbapenem-nonsusceptible isolates.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Andrew Walkty ◽  
James A. Karlowsky ◽  
Melanie R. Baxter ◽  
Heather J. Adam ◽  
George G. Zhanel

ABSTRACTThe Clinical and Laboratory Standards Institute (CLSI) broth microdilution method was used to evaluate thein vitroactivities of plazomicin and comparator antimicrobial agents against 7,712 Gram-negative and 4,481 Gram-positive bacterial pathogens obtained from 2013 to 2017 from patients in Canadian hospitals as part of the CANWARD Surveillance Study. Plazomicin demonstrated potentin vitroactivity againstEnterobacteriaceae(MIC90≤ 1 µg/ml for all species tested exceptProteus mirabilisandMorganella morganii), including aminoglycoside-nonsusceptible, extended-spectrum β-lactamase (ESBL)-positive, and multidrug-resistant (MDR) isolates. Plazomicin was equally active against methicillin-susceptible and methicillin-resistant isolates ofStaphylococcus aureus.


2020 ◽  
Vol 59 (1) ◽  
pp. e00951-20 ◽  
Author(s):  
Patricia J. Simner ◽  
Robin Patel

ABSTRACTCefiderocol (formerly S-649266) is a novel siderophore-conjugated cephalosporin with activity against a broad array of multidrug-resistant (MDR), aerobic Gram-negative bacilli. The siderophore component binds iron and uses active iron transport for drug entry into the bacterial periplasmic space. The cephalosporin moiety is the active antimicrobial component, structurally resembling a hybrid between ceftazidime and cefepime. Like other β-lactam agents, the principal bactericidal activity of cefiderocol occurs via inhibition of bacterial cell wall synthesis by binding of penicillin-binding proteins (PBPs) and inhibiting peptidoglycan synthesis, leading to cell death. Iron concentrations need to be taken into consideration when in vitro antimicrobial susceptibility to cefiderocol is determined. Broth microdilution (BMD) and disk diffusion methods have been developed to determine in vitro activity of cefiderocol. For BMD, cation-adjusted Mueller-Hinton broth (CAMHB) requires iron depletion to provide MICs predictive of in vivo activity. A method to prepare iron-depleted CAMHB (ID-CAMHB) has been described by the Clinical and Laboratory Standards Institute (CLSI). For disk diffusion, standard Mueller-Hinton agar is recommended, presumably because iron is bound in the medium. Currently, clinical FDA and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints and investigational (research-use-only) CLSI breakpoints exist for interpreting cefiderocol susceptibility results for certain Gram-negative bacilli. Cefiderocol does not have clinically relevant activity against Gram-positive or anaerobic organisms. FDA or EUCAST breakpoints should be applied to interpret results for Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex for patient care until the investigational status has been removed from CLSI breakpoints. Further clinical outcome data are required to assess the effectiveness of cefiderocol for treatment of other Acinetobacter species (non-baumannii complex) and Stenotrophomonas maltophilia at this time, and, as such, antimicrobial susceptibility testing of these organisms should be limited to research use in the scenario of limited treatment options.


Sign in / Sign up

Export Citation Format

Share Document