scholarly journals 1590. Updated Aminoglycoside (AG) MIC Breakpoints (BP) to Minimize Adverse Events and Improve Outcome: Impact on Susceptibility (S) Rates

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S580-S580
Author(s):  
Michael A Pfaller ◽  
Robert K Flamm ◽  
Paul G Ambrose ◽  
David Andes ◽  
John S Bradley ◽  
...  

Abstract Background In 2016 USCAST, the National Advisory Committee (NAC) for the United States (US) to EUCAST, undertook the re-evaluation of the in vitro susceptibility (AST) test interpretive criteria (IC) for gentamicin (GM), tobramycin (TO) and amikacin (AK) against Enterobacteriaceae (ENT), P. aeruginosa (PSA) and S. aureus (SA) based on an analysis of contemporary microbiology and PK/PD data. In 2019 USCAST posted the third version (www.uscast.org) of AG IC document and CLSI and EUCAST has published AG IC in CLSI M100-S29 and EUCAST v 9.0 documents. USCAST ICs for S were generally lower than those proposed by CLSI for all organism/drug combinations. PK/PD emphasized high, extended interval dosing (5 renal function groups) to reduce nephro-vestibular toxicity and a stasis exposure endpoint. Here, we evaluate the impact on S rates for US AST data that these IC changes created. Methods Clinical isolates from 2010 to 2018 US SENTRY Program (reference broth microdilution AST) were analyzed for S based on current and previous IC values. AG results for GM, TO and AK were evaluated against 66,280 ENT, 13,959 PSA and 51,950 SA. Benchmark S data for meropenem, cefepime, piperacillin–tazobactam and new AG, plazomicin (PZM) were included as well as ESBL and carbapenem-resistant ENT (CRE; 805 isolates). Results S rates for ENT as determined by USCAST IC were reduced by 4.2/1.2/3.1% for AK/GM/TO (CLSI) and by 3.3% for AK (EUCAST); no S rate difference for GM and TO as determined by USCAST/EUCAST. For PSA, S decreased by 46.8/6.2% for AK/TO (EUCAST) and 51.6/6.2% (CLSI). S for SA vs. GM declined by only 0.2% (CLSI). No AG IC could be calculated/offered for Acinetobacter or GM X PSA or AM/TO X SA. Best S overall coverage X ESBL (99.2%) or CRE (97.2%) isolates was by PZM. Conclusion USCAST IC updates for AG lead to reduced values for some organism/drug combinations among ENT and PSA compared with those proposed elsewhere. The USCAST-recommended ICs were based on achieving AUC/MIC ratio target associated with net bacterial stasis. Given the assumption of AG combination therapy, stasis was considered a reasonable endpoint when evaluating AG ICs to improve both safety and efficacy. Some organism X drug exposures could not be calculated and lower IC for pneumonia isolates (GM, TO) was recommended. Disclosures All authors: No reported disclosures.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S733-S733
Author(s):  
Dee Shorttidge ◽  
Jennifer M Streit ◽  
Michael D Huband ◽  
Robert K Flamm

Abstract Background Delafloxacin (DLX) is an anionic fluoroquinolone (FQ) that has been approved in the United States and in Europe for the treatment of acute bacterial skin and skin structure infections and was recently approved in the US for treatment of community-acquired bacterial pneumonia (CABP). In the present study, in vitro susceptibility (S) results for DLX and comparator agents were determined for CABP pathogens including Streptococcus pneumoniae (SPN), Haemophilus influenzae (HI), H. parainfluenzae (HP) and Moraxella catarrhalis (MC) clinical isolates from European hospitals participating in the SENTRY Program during 2014-2019. Methods A total of 2,835 SPN, 1,484 HI, 959 MC, and 20 HP isolates were collected from community-acquired respiratory tract infections (CARTI) during 2014-2019 from European hospitals. Sites included only 1 isolate/patient/infection episode. Isolate identifications were confirmed at JMI Laboratories. Susceptibility testing was performed according to CLSI broth microdilution methodology, and EUCAST (2020) breakpoints were applied where applicable. Other antimicrobials tested included levofloxacin (LEV) and moxifloxacin (MOX; not tested in 2015). Multidrug-resistant (MDR) SPN isolates were categorized as being nonsusceptible (NS) to amoxicillin-clavulanate, erythromycin (ERY), and tetracycline; other SPN phenotypes were ERY-NS, or penicillin (PEN)-NS. β-lactamase (BL) presence was determined for HI, HP, and MC. Results The activities of the 3 FQs are shown in the table. The most active agent against SPN was DLX, with the lowest MIC50/90 values of 0.015/0.03 mg/L. DLX activities were the same when tested against the MDR or PEN-NS for SPN phenotypes. ERY-NS isolates had DLX MIC50/90 results of 0.015/0.03 mg/L. DLX was the most active FQ against HI, HP, and MC. BL presence did not affect FQ MIC values for HI or MC; only 1 HP isolate was BL-positive. Conclusion DLX demonstrated potent in vitro antibacterial activity against SPN, HI, HP, and MC. DLX was active against MDR SPN that were NS to the agents commonly used as treatments for CABP. These data support the utility of DLX in CABP including when caused by antibiotic resistant strains. Table 1 Disclosures Jennifer M. Streit, BS, A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Merck (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support) Robert K. Flamm, PhD, A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Amplyx Pharmaceuticals (Research Grant or Support)Basilea Pharmaceutica International, Ltd (Research Grant or Support)Department of Health and Human Services (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S793-S793
Author(s):  
Lynn-Yao Lin ◽  
Dmitri Debabov ◽  
William Chang

Abstract Background OXA-48 is a carbapenemase with low-level hydrolytic activity toward cephalosporins. This study evaluated in vitro activities of ceftazidime-avibactam (CAZ-AVI), meropenem (MEM), meropenem-vaborbactam (MVB), ceftolozane-tazobactam (C/T), and other antimicrobial agents against 113 OXA-48-producing Enterobacterales with multiple resistance mechanisms collected in a 2017–2018 global surveillance program. Methods Nonduplicate clinical isolates of 113 Enterobacterales were collected from medical centers in 25 countries in 2017–2018. In vitro susceptibility tests were performed by broth microdilution with a custom-made panel consisting of CAZ-AVI, ceftazidime (CAZ), MEM, MVB, C/T, colistin (COL), gentamicin (GEN), levofloxacin (LEV), and amikacin (AMK). Whole genome sequencing or quantitative PCR data were used to analyze resistance mechanisms, such as OXA-48, extended-spectrum β-lactamase (ESBL), original-spectrum β-lactamase (OSBL), and AmpC β-lactamase. Clinical and Laboratory Standards Institute breakpoints were applied for susceptibility interpretations. Results Of 113 OXA-48–producing clinical isolates, 20 carried OXA-48 alone. The remaining 93 isolates carried additional β-lactamases, including 63 with ESBL (CTX-M-15) + OSBL (SHV, TEM), 15 with AmpC (DHA, AAC, CMY) + ESBL (CTX-M-15), and 15 with OSBL (SHV, TEM). 99.1% (all but 1) of all isolates tested were susceptible to CAZ-AVI, whereas 71.7%, 17.7%, and 14.2% were susceptible to MVB, MEM, and C/T, respectively. Among isolates harboring multiple resistance mechanisms (OXA-48 + ESBL + OSBL; n=63), 98.4%, 69.8%, 11.1%, and 7.9% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively. Among isolates carrying OXA-48 + AmpC + ESBL + OSBL (n=15), 100%, 66.7%, 13.3%, and 13.3% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively (Table). Aminoglycosides (AMK and GEN) and other β-lactams (eg, CAZ) were 20%–90% active against these isolates. COL was the second most effective comparator, inhibiting 83.2% of these isolates. Table Conclusion CAZ-AVI was the most effective agent in this study compared with other antibiotics, including β-lactams, β-lactam–β-lactamase inhibitor combinations, aminoglycosides, and COL, against OXA-48-producing Enterobacterales carrying multiple β-lactamases. Disclosures Lynn-Yao Lin, MS, AbbVie (Employee) Dmitri Debabov, PhD, AbbVie (Employee) William Chang, BS, AbbVie (Employee)


2006 ◽  
Vol 203 (7) ◽  
pp. 1637-1642 ◽  
Author(s):  
Shixin Qin ◽  
Haichao Wang ◽  
Renqi Yuan ◽  
Hui Li ◽  
Mahendar Ochani ◽  
...  

Severe sepsis, a lethal syndrome after infection or injury, is the third leading cause of mortality in the United States. The pathogenesis of severe sepsis is characterized by organ damage and accumulation of apoptotic lymphocytes in the spleen, thymus, and other organs. To examine the potential causal relationships of apoptosis to organ damage, we administered Z-VAD-FMK, a broad-spectrum caspase inhibitor, to mice with sepsis. We found that Z-VAD-FMK–treated septic mice had decreased levels of high mobility group box 1 (HMGB1), a critical cytokine mediator of organ damage in severe sepsis, and suppressed apoptosis in the spleen and thymus. In vitro, apoptotic cells activate macrophages to release HMGB1. Monoclonal antibodies against HMGB1 conferred protection against organ damage but did not prevent the accumulation of apoptotic cells in the spleen. Thus, our data indicate that HMGB1 production is downstream of apoptosis on the final common pathway to organ damage in severe sepsis.


2021 ◽  
pp. 1-4
Author(s):  
Ivana Jurić ◽  
Zrinka Bošnjak ◽  
Mario Ćorić ◽  
Joško Lešin ◽  
Ivana Mareković

1999 ◽  
Vol 123 (4) ◽  
pp. 285-289 ◽  
Author(s):  
Gary V. Doern ◽  
Angela B. Brueggemann ◽  
Michael A. Pfaller ◽  
Ronald N. Jones

Abstract Objective.—To assess the performance of clinical microbiology laboratories in the United States when conducting in vitro susceptibility tests with Streptococcus pneumoniae. Methods.—The results of a nationwide College of American Pathologists Proficiency Survey test sample, in which susceptibility testing of an isolate of S pneumoniae was performed, were assessed with respect to precision and accuracy. Results.—Wide variability was noted among participating laboratories with both minimum inhibitory concentration procedures and disk diffusion susceptibility tests when both methods were applied to S pneumoniae. Despite this high degree of variation, categorical interpretive errors were uncommon. Numerous laboratories reported results for antimicrobial agents that are not recommended by the National Committee for Clinical Laboratory Standards for tests with S pneumoniae. Conclusions.—Current susceptibility testing practices with S pneumoniae in the United States indicate limited precision and a tendency for laboratories to test and report results obtained with antimicrobial agents of questionable therapeutic value against this organism. Continued efforts to standardize susceptibility testing of S pneumoniae in the United States are warranted. In addition, modifications of existing interpretive criteria may be necessary.


1997 ◽  
Vol 119 (2) ◽  
pp. 175-181 ◽  
Author(s):  
Y. HIRAKATA ◽  
T. YAMAGUCHI ◽  
K. IZUMIKAWA ◽  
J. MATSUDA ◽  
K. TOMONO ◽  
...  

Glycopeptide resistance in enterococci is now a cause of clinical concern in the United States and Europe. However, details of vancomycin resistance in enterococci in Japan have been unknown. We measured minimum inhibitory concentrations (MICs) of various antimicrobial agents for a total of 218 clinical strains of enterococci isolated in our hospital in 1995–6 in addition to 15 strains with known genotypic markers of resistance. We also screened vancomycin resistance genes using a single step multiplex-PCR.In clinical isolates, only two strains of Enterococcus gallinarum were of intermediate resistance to vancomycin (MIC, 8 μg/ml), while the others were all susceptible. Glycopeptides (vancomycin and teicoplanin) and streptogramins (RP 58500 and RPR 106972) showed potent antimicrobial effects for the isolates. In addition, ampicillin was also potent for Enterococcus faecalis, while ampicillin, minocycline and gentamicin were potent for Enterococcus avium. No vanA or vanB genes were detected, while vanC1 and vanC23 genes were detected from two and four strains, respectively. Our results suggest that incidence of VRE in Japan may be estimated as still very low at this time.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Laura V. Ashton ◽  
Robert L. Callan ◽  
Sangeeta Rao ◽  
Gabriele A. Landolt

Infection of dogs with canine influenza virus (CIV) is considered widespread throughout the United States following the first isolation of CIV in 2004. While vaccination against influenza A infection is a common and important practice for disease control, antiviral therapy can serve as a valuable adjunct in controlling the impact of the disease. In this study, we examined the antiviral activity of nitazoxanide (NTZ) and tizoxanide (TIZ) against three CIV isolatesin vitro. NTZ and TIZ inhibited virus replication of all CIVs with 50% and 90% inhibitory concentrations ranging from 0.17 to 0.21 μMand from 0.60 to 0.76 μM, respectively. These results suggest that NTZ and TIZ are effective against CIV and may be useful for treatment of canine influenza in dogs but further investigation of thein vivoefficacy against CIV as well as the drug's potential for toxicity in dogs is needed.


Author(s):  
Jade L. L. Teng ◽  
Elaine Chan ◽  
Asher C. H. Dai ◽  
Gillian Ng ◽  
Tsz Tuen Li ◽  
...  

Both typhoidal and non-typhoidal salmonellae are included in the top 15 drug-resistant threats described by the Center for Disease Control and Prevention of the United States. There is an urgent need to look for alternative antibiotics for the treatment of Salmonella infections. We examined the in vitro susceptibilities of ceftolozane/tazobactam and six other antibiotics on typhoidal and non-typhoidal salmonellae, including isolates that are extended-spectrum β-lactamase (ESBL)-positive, using the broth microdilution test. Of the 313 (52 typhoidal and 261 non-typhoidal) Salmonella isolates tested, 98.7% were susceptible to ceftolozane/tazobactam. Based on the overall MIC 50/90 values, Salmonella isolates were more susceptible to ceftolozane/tazobactam (0.25/0.5 mg/L) compared to all other comparator agents: ampicillin (≥64/≥64 mg/L), levofloxacin (0.25/1 mg/L), azithromycin (4/16 mg/L), ceftriaxone (≤0.25/4 mg/L), chloramphenicol (8/≥64 mg/L) and trimethoprim/sulfamethoxazole (1/≥8 mg/L). When comparing the activity of the antimicrobial agents against non-typhoidal Salmonella isolates according to their serogroup, ceftolozane/tazobactam had the highest activity (100%) against Salmonella serogroups D, G, I and Q isolates, whereas the lowest activity (85.7%) was observed against serogroup E isolates. All the 10 ESBL-producing Salmonella (all non-typhoidal) isolates, of which 8 were CTX-M-55-producers and 2 were CTX-M-65-producers, were sensitive to ceftolozane/tazobactam albeit with a higher MIC 50/90 value (1/2 mg/L) than non-ESBL-producers (0.25/0.5 mg/L). In summary, our data indicate that ceftolozane/tazobactam is active against most strains of both typhoidal and non-typhoidal salmonellae and also active against ESBL-producing salmonellae.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S577-S578
Author(s):  
Dee Shortridge ◽  
Jennifer M Streit ◽  
Michael D Huband ◽  
Robert K Flamm

Abstract Background Delafloxacin (DLX) is an anionic fluoroquinolone (FQ) antimicrobial that was approved in 2017 by the United States (US) Food and Drug Administration for the treatment of acute bacterial skin and skin structure infections. DLX recently successfully completed a clinical trial for the treatment of community-acquired bacterial pneumonia (CABP). In the present study, in vitro susceptibility (S) results for DLX and comparator agents were determined for CABP pathogens including Streptococcus pneumoniae (SPN), Haemophilus influenzae (HI), H. parainfluenzae (HP) and Moraxella catarrhalis (MC) clinical isolates from US hospitals participating in the SENTRY Program during 2014–2018. Methods A total of 1,975 SPN, 1,128 HI, 684 MC, and 43 HP isolates were collected from community-acquired respiratory tract infections (CARTI) during 2014–2018 from US hospitals. Sites included only 1 isolate/patient/infection episode. Isolate identifications were confirmed at JMI Laboratories. Susceptibility testing was performed according to CLSI broth microdilution methodology, and CLSI (2019) breakpoints were applied where applicable. Other antimicrobials tested included levofloxacin (LEV) and moxifloxacin (MOX; not tested in 2015). Multidrug-resistant (MDR) SPN isolates were categorized as being nonsusceptible (NS) to amoxicillin-clavulanate, erythromycin, and tetracycline; other SPN phenotypes were LEV-NS or penicillin (PEN)-NS. β-Lactamase (BL) presence was determined for HI, HP, and MC. Results The activities of the 3 FQs are shown in the table. The most active agent against SPN was DLX, with the lowest MIC50/90 values of 0.015/0.03 mg/L. DLX activities were similar when tested against the MDR or PEN-NS for SPN phenotypes. LEV-NS isolates had DLX MIC50/90 results of 0.12/0.25 mg/L. DLX was the most active FQ against HI, HP, and MC. BL presence did not affect FQ MIC values for HI or MC; only 2 HP isolates were BL-positive. Conclusion DLX demonstrated potent in vitro antibacterial activity against SPN, HI, HP, and MC. DLX was active against MDR SPN that were NS to the agents commonly used as treatments for CABP. DLX had excellent activity against LEV-NS SPN. These data support the continued study of DLX as a potential treatment for CABP. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S93-S94
Author(s):  
Cecilia G Carvalhaes ◽  
Mariana Castanheira ◽  
Rodrigo E Mendes ◽  
Helio S Sader

Abstract Background We evaluated the antimicrobial susceptibility of Enterobacterales (ENT) and P. aeruginosa (PSA) causing bloodstream infections (BSIs) in the United States (US) hospitals. Methods A total of 3,317 ENT and 331 PSA isolates were consecutively collected (1/patient) from patients with BSI in 68 US medical centers in 2017–2018 and tested for susceptibility (S) by reference broth microdilution methods in a central laboratory as part of the International Network for Optimal Resistance Monitoring (INFORM) Program. β-Lactamase screening was performed by whole-genome sequencing on ENT with decreased S to broad-spectrum cephalosporins (ESBL phenotype). Results The most common ENT species isolated from BSI were E. coli (EC; 41.9% of ENT), K. pneumoniae (KPN; 24.4%), and E. cloacae (ECL; 8.7%), and the most active agents against ENT were ceftazidime–avibactam (CAZ-AVI; 99.9%S), amikacin (AMK; 99.6%S) and meropenem (MEM; 99.3%S). CAZ-AVI was active against all EC and KPN isolates (100.0%S). Only 2 ENT isolates (0.06%) were CAZ-AVI resistant, 2 NDM-1-producing ECL isolated in the New York City area. Ceftolozane–tazobactam (C-T) and piperacillin–tazobactam (PIP-TAZ) showed good activity against EC and KPN (92.2–98.9%S; Table), with limited activity against ECL (81.9–83.7%S). The most common ESBLs were CTX-M-type, which was observed in 93% of ESBL producers (mainly CTX-M-15 [64% of ESBL producers] and CTX-M-27 [13%]), and OXA-1/OXA-30 (42%); 42% of ESBL producers (n = 333, excluding carbapenemase producers) displayed ≥2 ESBL genes, mainly CTX-M-15 and OXA-1/OXA-30 (40% of ESBL producers). The most active agents against ESBL producers were CAZ-AVI (100.0%S), imipenem (99.4%S), and colistin (COL; 99.1%S). Only CAZ-AVI (99.4%S), AMK (96.2%S) and MEM (92.8%S) were active against >90% of multidrug-resistant (MDR) ENT. Among 19 carbapenem-resistant ENT (CRE; 0.6% of ENT), 9 produced a KPC-like, 2 an NDM-1, and 2 an NMC-A; carbapenemase genes were not found in 6 CRE isolates. COL (100.0%S), CAZ-AVI (98.5%S), AMK (98.5%S), C-T (98.1%S), and tobramycin (97.0%S) were very active against PSA. Conclusion CAZ-AVI exhibited potent in vitro activity and great spectrum against ENT (99.9%S) and PSA (98.5%) isolated from patients with BSI from US hospitals. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document