Designing Shots for Storytelling

Author(s):  
Brine Kelly

Chapter 5 explains and illustrates how a director or cinematographer can make better storytelling choices when designing shots for film, video, or animation. Sequences of shots must be designed to emphasize the drama. If an entire scene is shot using a stationary wide shot, a single shot that pans left and right as needed, or a handheld camera that follows the characters around, the scene’s story will probably not be well told. This chapter explains why dramatizing most scenes means using the camera to record several shots from different angles that are designed both to emphasize the dramatic beats and to cut smoothly and clearly with each other. Some of the important design considerations that are explored are camera angles, shot size, camera movement, the direction of character movement in relation to the camera, and creating moods.

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2458
Author(s):  
Anu Venkatesh ◽  
Angela Chang ◽  
Emilie A. Green ◽  
Tianna Randall ◽  
Raquel Gallagher ◽  
...  

Interventions that address binge eating and food insecurity are needed. Engaging people with lived experience to understand their needs and preferences could yield important design considerations for such interventions. In this study, people with food insecurity, recurrent binge eating, and obesity completed an interview-based needs assessment to learn facilitators and barriers that they perceive would impact their engagement with a digital intervention for managing binge eating and weight. Twenty adults completed semi-structured interviews. Responses were analyzed using thematic analysis. Three themes emerged. Participants shared considerations that impact their ability to access the intervention (e.g., cost of intervention, cost of technology, accessibility across devices), ability to complete intervention recommendations (e.g., affordable healthy meals, education to help stretch groceries, food vouchers, rides to grocery stores, personalized to budget), and preferred intervention features for education, self-monitoring, personalization, support, and motivation/rewards. Engaging people with lived experiences via user-centered design methods revealed important design considerations for a digital intervention to meet this population’s needs. Future research is needed to test whether a digital intervention that incorporates these recommendations is engaging and effective for people with binge eating and food insecurity. Findings may have relevance to designing digital interventions for other health problems as well.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 982
Author(s):  
Yuh-Chung Hu ◽  
Zen-Yu Chen ◽  
Pei-Zen Chang

Coriolis mass flowmeters are highly customized products involving high-degree fluid-structure coupling dynamics and high-precision manufacture. The typical delay from from order to shipment is at least 4 months. This paper presents some important design considerations through simulation and experiments, so as to provide manufacturers with a more time-efficient product design and manufacture process. This paper aims at simulating the fluid-structure coupling dynamics of a dual U-tube Coriolis mass flowmeter through the COMSOL simulation package. The simulation results are experimentally validated using a dual U-tube CMF manufactured by Yokogawa Co., Ltd. in a TAF certified flow testing factory provided by FineTek Co., Ltd. Some important design considerations are drawn from simulation and experiment. The zero drift will occur when the dual U-tube structure is unbalanced and therefore the dynamic balance is very important in the manufacturing of dual U-tube CMF. The fluid viscosity can be determined from the driving current of the voice coil actuator or the pressure loss between the inlet and outlet of CMF. Finally, the authors develop a simulation application based on COMSOL’s development platform. Users can quickly evaluate their design through by using this application. The present application can significantly shorten product design and manufacturing time.


1980 ◽  
Vol 102 (3) ◽  
pp. 555-557
Author(s):  
Krishna P. Singh ◽  
V. K. Luk

Saddle supports of horizontally mounted pressure vessels, when subject to seismic and mechanical loads, interact with the foundation in a highly non-linear manner. The maximum foundation concrete pressure, and hold-down bolt stresses are important design considerations which often govern the vessel support geometry. A method is given herein to determine the foundation stresses due to arbitrary imposed loadings. The solution procedure lends itself easily to automated computation—a highly desirable feature—since most nuclear equipment has to be analyzed for a large number of loading conditions.


Climate Law ◽  
2015 ◽  
Vol 5 (2-4) ◽  
pp. 252-294 ◽  
Author(s):  
William C. G. Burns ◽  
Jane A. Flegal

The feckless response of the world community to the mounting threat of climate change has led to a growing interest in climate geoengineering research. In early 2015, the us National Academy of Sciences released two major reports on the topic. While it is notable that both reports recommended some form of public participation to inform research, this article argues that the vagueness of these recommendations could mean that their implementation might not comport with optimal approaches for public deliberation. We outline some options for public deliberation on climate geoengineering and important design considerations.


1973 ◽  
Vol 95 (4) ◽  
pp. 470-476 ◽  
Author(s):  
J. M. Gonzalez-Santalo ◽  
R. T. Lahey

One of the important design considerations in modern water-cooled nuclear reactors is their thermal performance during hypothetical accident situations. However, an accurate analysis of the system thermal-hydraulics is required before the thermal margins can be appraised. In this paper, an analysis based on the method of characteristics has been developed by which the exact solution to flow decay transients in homogeneous two-phase systems can be obtained. The exact solution presented yields the system flow and quality at each point in space and time during an exponential flow decay transient. These parameters can then be combined with an appropriate CHF correlation to predict the occurrence of transient CHF.


Author(s):  
Esther Foo ◽  
Heidi Woelfle ◽  
Brad Holschuh

This paper investigates the tradeoffs between design variables important for the development of a mobility support soft exoskeleton for horizontal shoulder adduction. The soft exoskeleton utilizes discreet shape memory alloy (SMA) spring actuators to generate the required torque to move the arm segment, while preserving the qualities of a soft, wearable garment solution. A pilot benchtop test involving varying power input, actuator anchor position, actuator orientation, and added weight, was investigated to evaluate their effects against the degree of motion the soft exoskeleton allows. The results show that the power input, actuator anchor position, and simulated limb weight each affect the ultimate horizontal adduction angle the exoskeleton is able to induce. Further, the project highlights a crucial point in regard to the tradeoffs between functionality and wearability: when actuator orientation was investigated, we found a decrement in functionality (as measured by maximum achievable horizontal adduction angle) when the actuators were constrained close to the body. This shows that when aiming to improve the hypothetical system’s wearability/usability, the effective torque that can be generated is reduced. Together these findings demonstrate important design considerations while developing a wearable, soft exoskeleton system that is capable of effectively supporting movement of the body while maintaining the comfort and discreetness of a regular garment.


Sign in / Sign up

Export Citation Format

Share Document