From Cambrian Explosion to First Farmers: How Climate Made Us Human

Author(s):  
Anthony McMichael

Details Blur As We peer back through millions of years, but the outline of the story is clear enough. During the past 2– 3 million years, our hominin forebears had to cope with an increasingly vari­able and cooling climate. Across those 100,000 Homo generations, survival and reproduction depended on maintaining biological and behavioral compatibility with constantly changing climatic and environmental conditions. Hence much of modern human biological versatility and adaptability, including several unique as­pects of brain function, comes from evolution’s selective winnowing within those ancient predecessor populations. The genes of the survi­vors, those best able to reproduce, are part of our genetic inheritance today. That climate change has been a major source of natural selec­tive pressure has long been known. Alfred Russel Wallace, the over­shadowed younger contemporary of Charles Darwin and codis­coverer of evolution by natural selection, wrote that, among the variations occurring in every fresh generation, survival of the fittest occurred in response to the “changes of climate, of food, of en­emies always in progress.” The corollary, of course, is that since biological evolution must focus on surviving the present, oblivious of the future, it provides no guarantee against extinction. Even so, a multivalent brain that enables cultural and behavioral adaptability and strategic forward thinking would surely help an animal spe­cies cope better with subsequent environmental changes. Indeed, it seems to have worked sufficiently well for our Homo genus an­cestors during two million years of ever- changing climatic condi­tions for at least one Homo species to have carried the baton of survival into the present. In the next two centuries, our species faces a new challenge of greater, faster, and protracted climate change. Since the Cambrian Explosion of new life forms around 540 million years ago, there have been five great natural extinctions and many lesser ones. The earliest extinction of multicellular life, though less destructive than its successors, occurred around 510 million years ago, apparently due to acute sulfurous shrouding, cooling, and oxygen deprivation caused by a massive volcanic eruption in northwest Australia. Most of these catastrophic transitions were marked by climate extremes, volcanic activity, and altered ocean chemistry, especially rapid surface acidification of shallow coastal waters.

Author(s):  
Charles Darwin

‘Man still bears in his bodily frame the indelible stamp of his lowly origin.’ On topics ranging from intelligent design and climate change to the politics of gender and race, the evolutionary writings of Charles Darwin occupy a pivotal position in contemporary public debate. This volume brings together the key chapters of his most important and accessible books, including the Journal of Researches on the Beagle voyage (1845), the Origin of Species (1871), and the Descent of Man, along with the full text of his delightful autobiography. They are accompanied by generous selections of responses from Darwin’s nineteenth-century readers from across the world. More than anything, they give a keen sense of the controversial nature of Darwin’s ideas, and his position within Victorian debates about man’s place in nature. The wide-ranging introduction by James A. Secord, Director of the Darwin Correspondence Project, explores the global impact and origins of Darwin’s work and the reasons for its unparalleled significance today.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Tharanga Thoradeniya ◽  
Saroj Jayasinghe

Abstract Background The COVID-19 pandemic is adversely impacting modern human civilization. A global view using a systems science approach is necessary to recognize the close interactions between health of animals, humans and the environment. Discussion A model is developed initially by describing five sequential or parallel steps on how a RNA virus emerged from animals and became a pandemic: 1. Origins in the animal kingdom; 2. Transmission to domesticated animals; 3. Inter-species transmission to humans; 4. Local epidemics; 5. Global spread towards a pandemic. The next stage identifies global level determinants from the physical environments, the biosphere and social environment that influence these steps to derive a generic conceptual model. It identifies that future pandemics are likely to emerge from ecological processes (climate change, loss of biodiversity), anthropogenic social processes (i.e. corporate interests, culture and globalization) and world population growth. Intervention would therefore require modifications or dampening these generators and prevent future periodic pandemics that would reverse human development. Addressing issues such as poorly planned urbanization, climate change and deforestation coincide with SDGs such as sustainable cities and communities (Goal 11), climate action (Goal 13) and preserving forests and other ecosystems (Goal 15). This will be an added justification to address them as global priorities. Some determinants in the model are poorly addressed by SDGs such as the case of population pressures, cultural factors, corporate interests and globalization. The overarching process of globalization will require modifications to the structures, processes and mechanisms of global governance. The defects in global governance are arguably due to historical reasons and the neo-liberal capitalist order. This became evident especially in the aftermath of the COVID-19 when the vaccination roll-out led to violations of universal values of equity and right to life by some of the powerful and affluent nations. Summary A systems approach leads us to a model that shows the need to tackle several factors, some of which are not adequately addressed by SDGs and require restructuring of global governance and political economy.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 296
Author(s):  
Andreas Matzarakis ◽  
Sorin Cheval ◽  
Tzu-Ping Lin ◽  
Oded Potchter

Facing the impacts of climate change and urbanization, adaptation and resilience to climate extremes have become important issues of global concern. [...]


PalZ ◽  
2021 ◽  
Author(s):  
Xingliang Zhang ◽  
Degan Shu

AbstractThe Cambrian Explosion by nature is a three-phased explosion of animal body plans alongside episodic biomineralization, pulsed change of generic diversity, body size variation, and progressive increase of ecosystem complexity. The Cambrian was a time of crown groups nested by numbers of stem groups with a high-rank taxonomy of Linnaean system (classes and above). Some stem groups temporarily succeeded while others were ephemeral and underrepresented by few taxa. The high number of stem groups in the early history of animals is a major reason for morphological gaps across phyla that we see today. Most phylum-level clades achieved their maximal disparity (or morphological breadth) during the time interval close to their first appearance in the fossil record during the early Cambrian, whereas others, principally arthropods and chordates, exhibit a progressive exploration of morphospace in subsequent Phanerozoic. The overall envelope of metazoan morphospace occupation was already broad in the early Cambrian though it did not reach maximal disparity nor has diminished significantly as a consequence of extinction since the Cambrian. Intrinsic and extrinsic causes were extensively discussed but they are merely prerequisites for the Cambrian Explosion. Without the molecular evolution, there could be no Cambrian Explosion. However, the developmental system is alone insufficient to explain Cambrian Explosion. Time-equivalent environmental changes were often considered as extrinsic causes, but the time coincidence is also insufficient to establish causality. Like any other evolutionary event, it is the ecology that make the Cambrian Explosion possible though ecological processes failed to cause a burst of new body plans in the subsequent evolutionary radiations. The Cambrian Explosion is a polythetic event in natural history and manifested in many aspects. No simple, single cause can explain the entire phenomenon.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yun-Hung Kuang ◽  
Yu-Fu Fang ◽  
Shau-Ching Lin ◽  
Shin-Fu Tsai ◽  
Zhi-Wei Yang ◽  
...  

Abstract Background The impact of climate change on insect resistance genes is elusive. Hence, we investigated the responses of rice near-isogenic lines (NILs) that carry resistance genes against brown planthopper (BPH) under different environmental conditions. Results We tested these NILs under three environmental settings (the atmospheric temperature with corresponding carbon dioxide at the ambient, year 2050 and year 2100) based on the Intergovernmental Panel on Climate Change prediction. Comparing between different environments, two of nine NILs that carried a single BPH-resistant gene maintained their resistance under the environmental changes, whereas two of three NILs showed gene pyramiding with two maintained BPH resistance genes despite the environmental changes. In addition, two NILs (NIL-BPH17 and NIL-BPH20) were examined in their antibiosis and antixenosis effects under these environmental changes. BPH showed different responses to these two NILs, where the inhibitory effect of NIL-BPH17 on the BPH growth and development was unaffected, while NIL-BPH20 may have lost its resistance during the environmental changes. Conclusion Our results indicate that BPH resistance genes could be affected by climate change. NIL-BPH17 has a strong inhibitory effect on BPH feeding on phloem and would be unaffected by environmental changes, while NIL-BPH20 would lose its ability during the environmental changes.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 243
Author(s):  
Javier Alcocer ◽  
Luis A. Oseguera ◽  
Diana Ibarra-Morales ◽  
Elva Escobar ◽  
Lucero García-Cid

High-mountain lakes are among the most comparable ecosystems globally and recognized sentinels of global change. The present study pursued to identify how the benthic macroinvertebrates (BMI) communities of two tropical, high mountain lakes, El Sol and La Luna, Central Mexico, have been affected by global/regional environmental pressures. We compared the environmental characteristics and the BMI communities between 2000–2001 and 2017–2018. We identified three principal environmental changes (the air and water temperature increased, the lakes’ water level declined, and the pH augmented and became more variable), and four principal ecological changes in the BMI communities [a species richness reduction (7 to 4), a composition change, and a dominant species replacement all of them in Lake El Sol, a species richness increase (2 to 4) in Lake La Luna, and a drastic reduction in density (38% and 90%) and biomass (92%) in both lakes]. The air and water temperature increased 0.5 °C, and lakes water level declined 1.5 m, all suggesting an outcome of climate change. Contrarily to the expected acidification associated with acid precipitation, both lakes deacidified, and the annual pH fluctuation augmented. The causes of the deacidification and the deleterious impacts on the BMI communities remained to be identified.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 43
Author(s):  
Stella M. Moreiras ◽  
Sergio A. Sepúlveda ◽  
Mariana Correas-González ◽  
Carolina Lauro ◽  
Iván Vergara ◽  
...  

This review paper compiles research related to debris flows and hyperconcentrated flows in the central Andes (30°–33° S), updating the knowledge of these phenomena in this semiarid region. Continuous records of these phenomena are lacking through the Andean region; intense precipitations, sudden snowmelt, increased temperatures on high relief mountain areas, and permafrost degradation are related to violent flow discharges. Documented catastrophic consequences related to these geoclimatic events highlight the need to improve their understanding in order to prepare the Andean communities for this latent danger. An amplified impact is expected not only due to environmental changes potentially linked to climate change but also due to rising exposure linked to urban expansion toward more susceptible or unstable areas. This review highlights as well the need for the implementation of preventive measures to reduce the negative impacts and vulnerability of the Andean communities in the global warming context.


2007 ◽  
Vol 13 ◽  
pp. 149-168 ◽  
Author(s):  
Erik J. Ekdahl

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.


2021 ◽  
pp. 100285
Author(s):  
Gloria C. Okafor ◽  
Isaac Larbi ◽  
Emmanuel C. Chukwuma ◽  
Clement Nyamekye ◽  
Andrew Manoba Limantol ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document