A Short Introduction to the Ethics of Artificial Intelligence

Author(s):  
S. Matthew Liao

This introduction outlines in section I.1 some of the key issues in the study of the ethics of artificial intelligence (AI) and proposes ways to take these discussions further. Section I.2 discusses key concepts in AI, machine learning, and deep learning. Section I.3 considers ethical issues that arise because current machine learning is data hungry; is vulnerable to bad data and bad algorithms; is a black box that has problems with interpretability, explainability, and trust; and lacks a moral sense. Section I.4 discusses ethical issues that arise because current machine learning systems may be working too well and human beings can be vulnerable in the presence of these intelligent systems. Section I.5 examines ethical issues arising out of the long-term impact of superintelligence such as how the values of a superintelligent AI can be aligned with human values. Section I.6 presents an overview of the essays in this volume.

2021 ◽  
Vol 2068 (1) ◽  
pp. 012042
Author(s):  
A Kolesnikov ◽  
P Kikin ◽  
E Panidi

Abstract The field of logistics and transport operates with large amounts of data. The transformation of such arrays into knowledge and processing using machine learning methods will help to find additional reserves for optimizing transport and logistics processes and supply chains. This article analyses the possibilities and prospects for the application of machine learning and geospatial knowledge in the field of logistics and transport using specific examples. The long-term impact of geospatial-based artificial intelligence systems on such processes as procurement, delivery, inventory management, maintenance, customer interaction is considered.


Author(s):  
Debdutta Choudhury

Hospitality is one of the most important sectors of the economy and offers employment to thousands of people. The recent advances in technology has seen that quite a few of the players in this industry have successfully deployed artificial intelligence, machine learning, and robotics. This chapter delves into the details of such deployment in the various processes in this sector and discusses the short-term, medium-term, and long-term impact of these technologies on all the major stakeholders of this industry. The author also looks at the cost benefit analysis of this technologies and concludes that most players sooner, rather than later would be forced by competition to strongly adopt them. The chapter also briefly discusses the changing roles of human employees in this scenario.


2019 ◽  
Vol 12 (2) ◽  
pp. 169-180
Author(s):  
Alejandro Díaz-Domínguez

Drawing from ethical concerns raised by communities of machine learning developers and considering predictive analytics’ very short-term predictions, several futures studies techniques are examined to offer some insights about possible bridges between machine learning and foresight. This review develops three main sections: (1) a brief explanation of central concepts, such as big data, machine learning, and artificial intelligence, hopefully not too simplistic but readable for larger audiences; (2) a discussion about ethical issues, such as bias, discrimination, and dilemmas in research; and (3) a brief description of how futures studies could address ethical dilemmas derived from different time horizons among machine learning immediate results, forecasting short-term predictions, and foresight long-term scenarios.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M Afnan ◽  
Y Liu ◽  
V Conitzer ◽  
C Rudin ◽  
A Mishra ◽  
...  

Abstract Study question What are the epistemic and ethical considerations of clinically implementing Artificial Intelligence (AI) algorithms in embryo selection? Summary answer AI embryo selection algorithms used to date are “black-box” models with significant epistemic and ethical issues, and there are no trials assessing their clinical effectiveness. What is known already The innovation of time-lapse imaging offers the potential to generate vast quantities of data for embryo assessment. Computer Vision allows image data to be analysed using algorithms developed via machine learning which learn and adapt as they are exposed to more data. Most algorithms are developed using neural networks and are uninterpretable (or “black box”). Uninterpretable models are either too complicated to understand or proprietary, in which case comprehension is impossible for outsiders. In the IVF context, these outsiders include doctors, embryologists and patients, which raises ethical questions for its use in embryo selection. Study design, size, duration We performed a scoping review of articles evaluating AI for embryo selection in IVF. We considered the epistemic and ethical implications of current approaches. Participants/materials, setting, methods We searched Medline, Embase, ClinicalTrials.gov and the EU Clinical Trials Register for full text papers evaluating AI for embryo selection using the following key words: artificial intelligence* OR AI OR neural network* OR machine learning OR support vector machine OR automatic classification AND IVF OR in vitro fertilisation OR embryo*, as well as relevant MeSH and Emtree terms for Medline and Embase respectively. Main results and the role of chance We found no trials evaluating clinical effectiveness either published or registered. We found efficacy studies which looked at 2 types of outcomes – accuracy for predicting pregnancy or live birth and agreement with embryologist evaluation. Some algorithms were shown to broadly differentiate well between “good-” and “poor-” quality embryos but not between embryos of similar quality, which is the clinical need. Almost universally, the AI models were opaque (“black box”) in that at least some part of the process was uninterpretable. “Black box” models are problematic for epistemic and ethical reasons. Epistemic concerns include information asymmetries between algorithm developers and doctors, embryologists and patients; the risk of biased prediction caused by known and/or unknown confounders during the training process; difficulties in real-time error checking due to limited interpretability; the economics of buying into commercial proprietary models, brittle to variation in the treatment process; and an overall difficulty troubleshooting. Ethical pitfalls include the risk of misrepresenting patient values; concern for the health and well-being of future children; the risk of disvaluing disability; possible societal implications; and a responsibility gap, in the event of adverse events. Limitations, reasons for caution Our search was limited to the two main medical research databases. Although we checked article references for more publications, we were less likely to identify studies that were not indexed in Medline or Embase, especially if they were not cited in studies identified in our search. Wider implications of the findings It is premature to implement AI for embryo selection outside of a clinical trial. AI for embryo selection is potentially useful, but must be done carefully and transparently, as the epistemic and ethical issues are significant. We advocate for the use of interpretable AI models to overcome these issues. Trial registration number not applicable


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.


2021 ◽  
Author(s):  
J. Eric T. Taylor ◽  
Graham Taylor

Artificial intelligence powered by deep neural networks has reached a levelof complexity where it can be difficult or impossible to express how a modelmakes its decisions. This black-box problem is especially concerning when themodel makes decisions with consequences for human well-being. In response,an emerging field called explainable artificial intelligence (XAI) aims to increasethe interpretability, fairness, and transparency of machine learning. In thispaper, we describe how cognitive psychologists can make contributions to XAI.The human mind is also a black box, and cognitive psychologists have overone hundred and fifty years of experience modeling it through experimentation.We ought to translate the methods and rigour of cognitive psychology to thestudy of artificial black boxes in the service of explainability. We provide areview of XAI for psychologists, arguing that current methods possess a blindspot that can be complemented by the experimental cognitive tradition. Wealso provide a framework for research in XAI, highlight exemplary cases ofexperimentation within XAI inspired by psychological science, and provide atutorial on experimenting with machines. We end by noting the advantages ofan experimental approach and invite other psychologists to conduct research inthis exciting new field.


2019 ◽  
Author(s):  
Xia Huiyi ◽  
◽  
Nankai Xia ◽  
Liu Liu ◽  
◽  
...  

With the development of urbanization and the continuous development, construction and renewal of the city, the living environment of human beings has also undergone tremendous changes, such as residential community environment and service facilities, urban roads and street spaces, and urban public service formats. And the layout of the facilities, etc., and these are the real needs of people in urban life, but the characteristics of these needs or their problems will inevitably have a certain impact on the user's psychological feelings, thus affecting people's use needs. Then, studying the ways in which urban residents perceive changes in the living environment and how they perceive changes in psychology and emotions will have practical significance and can effectively assist urban management and builders to optimize the living environment of residents. This is also the long-term. One of the topics of greatest interest to urban researchers since then. In the theory of demand hierarchy proposed by American psychologist Abraham Maslow, safety is the basic requirement second only to physiological needs. So safety, especially psychological security, has become one of the basic needs of people in the urban environment. People's perception of the psychological security of the urban environment is also one of the most important indicators in urban environmental assessment. In the past, due to the influence of technical means, the study of urban environmental psychological security often relied on the limited investigation of a small number of respondents. Low-density data is difficult to measure the perceptual results of universality. With the leaping development of the mobile Internet, Internet image data has grown geometrically over time. And with the development of artificial intelligence technology in recent years, image recognition and perception analysis based on machine learning has become possible. The maturity of these technical conditions provides a basis for the study of the urban renewal index evaluation system based on psychological security. In addition to the existing urban visual street furniture data obtained through urban big data collection combined with artificial intelligence image analysis, this paper also proposes a large number of urban living environment psychological assessment data collection strategies. These data are derived from crowdsourcing, and the collection method is limited by the development of cost and technology. At present, the psychological security preference of a large number of users on urban street images is collected by forced selection method, and then obtained by statistical data fitting to obtain urban environmental psychology. Security sense training set. In the future, when the conditions are mature, the brainwave feedback data in the virtual reality scene can be used to carry out the machine learning of psychological security, so as to improve the accuracy of the psychological security data.


Author(s):  
Nandini Sen

This chapter aims to create new knowledge regarding artificial intelligence (AI) ethics and relevant subjects while reviewing ethical relationship between human beings and AI/robotics and linking between the moral fabric or the ethical issues of AI as used in fictions and films. It carefully analyses how a human being will love robot and vice versa. Here, fictions and films are not just about technology but about their feelings and the nature of bonding between AIs and the human race. Ordinary human beings distrust and then start to like AIs. However, if the AI becomes a rogue as seen in many fictions and films, then the AI is taken down to avoid the destruction of the human beings. Scientists like Turing are champions of robot/AI's feelings. Fictional and movie AIs are developed to keenly watch and comprehend humans. These actions are so close to empathy they amount to consciousness and emotional quotient.


2021 ◽  
pp. 164-184
Author(s):  
Saiph Savage ◽  
Carlos Toxtli ◽  
Eber Betanzos-Torres

The artificial intelligence (AI) industry has created new jobs that are essential to the real world deployment of intelligent systems. Part of the job focuses on labelling data for machine learning models or having workers complete tasks that AI alone cannot do. These workers are usually known as ‘crowd workers’—they are part of a large distributed crowd that is jointly (but separately) working on the tasks although they are often invisible to end-users, leading to workers often being paid below minimum wage and having limited career growth. In this chapter, we draw upon the field of human–computer interaction to provide research methods for studying and empowering crowd workers. We present our Computational Worker Leagues which enable workers to work towards their desired professional goals and also supply quantitative information about crowdsourcing markets. This chapter demonstrates the benefits of this approach and highlights important factors to consider when researching the experiences of crowd workers.


2002 ◽  
Vol 3 (1) ◽  
pp. 28-31 ◽  
Author(s):  
Francisco Azuaje

Research on biological data integration has traditionally focused on the development of systems for the maintenance and interconnection of databases. In the next few years, public and private biotechnology organisations will expand their actions to promote the creation of a post-genome semantic web. It has commonly been accepted that artificial intelligence and data mining techniques may support the interpretation of huge amounts of integrated data. But at the same time, these research disciplines are contributing to the creation of content markup languages and sophisticated programs able to exploit the constraints and preferences of user domains. This paper discusses a number of issues on intelligent systems for the integration of bioinformatic resources.


Sign in / Sign up

Export Citation Format

Share Document