An Introduction to the Brain

Author(s):  
Frederick L. Coolidge

This chapter emphasizes that human brains are the most complicated animate or inanimate system in the universe. It begins with a discussion of the definition of life and consciousness and the transition from life to consciousness. It is proposed that consciousness began with the ability to learn associatively (classical and operant conditioning) during the Cambrian period. There is a discussion of the four cell-building principles of the brain: cell proliferation, cell differentiation, cell migration, and programmed cell death. The multiple naming systems for the brain are presented: (1) Brodmann’s areas, (2) presumed function, (3) people’s names (4) regional location, (5) location and nature of the structure, and (6) gross anatomical name. The chapter reviews the four major brain lobes and their functions. It covers major structures of the limbic system and emphasizes the functional role of the brain’s fasciculi, the major connections for neural transmission, which reflects the concerted evolution of various brain regions.

2021 ◽  
Vol 12 ◽  
Author(s):  
Kendra G. Kandana Arachchige ◽  
Isabelle Simoes Loureiro ◽  
Wivine Blekic ◽  
Mandy Rossignol ◽  
Laurent Lefebvre

Iconic gesture-speech integration is a relatively recent field of investigation with numerous researchers studying its various aspects. The results obtained are just as diverse. The definition of iconic gestures is often overlooked in the interpretations of results. Furthermore, while most behavioral studies have demonstrated an advantage of bimodal presentation, brain activity studies show a diversity of results regarding the brain regions involved in the processing of this integration. Clinical studies also yield mixed results, some suggesting parallel processing channels, others a unique and integrated channel. This review aims to draw attention to the methodological variations in research on iconic gesture-speech integration and how they impact conclusions regarding the underlying phenomena. It will also attempt to draw together the findings from other relevant research and suggest potential areas for further investigation in order to better understand processes at play during speech integration process.


1987 ◽  
Vol 252 (6) ◽  
pp. H1183-H1191
Author(s):  
C. Iadecola ◽  
P. M. Lacombe ◽  
M. D. Underwood ◽  
T. Ishitsuka ◽  
D. J. Reis

We studied whether adrenal medullary catecholamines (CAs) contribute to the metabolically linked increase in regional cerebral blood flow (rCBF) elicited by electrical stimulation of the dorsal medullary reticular formation (DMRF). Rats were anesthetized (alpha-chloralose, 30 mg/kg), paralyzed, and artificially ventilated. The DMRF was electrically stimulated with intermittent trains of pulses through microelectrodes stereotaxically implanted. Blood gases were controlled and, during stimulation, arterial pressure was maintained within the autoregulated range for rCBF. rCBF and blood-brain barrier (BBB) permeability were determined in homogenates of brain regions by using [14C]iodoantipyrine and alpha-aminoisobutyric acid (AIB), respectively, as tracers. Plasma CAs (epinephrine and norepinephrine) were measured radioenzymatically. DMRF stimulation increased rCBF throughout the brain (n = 5; P less than 0.01, analysis of variance) and elevated plasma CAs substantially (n = 4). Acute bilateral adrenalectomy abolished the increase in plasma epinephrine (n = 4), reduced the increases in flow (n = 6) in cerebral cortex (P less than 0.05), and abolished them elsewhere in brain (P greater than 0.05). Comparable effects on rCBF were obtained by selective adrenal demedullation (n = 7) or pretreatment with propranolol (1.5 mg/kg iv) (n = 5). DMRF stimulation did not increase the permeability of the BBB to AIB (n = 5). We conclude that the increases in rCBF elicited from the DMRF has two components, one dependent on, and the other independent of CAs. Since the BBB is impermeable to CAs and DMRF stimulation fails to open the BBB, the results suggest that DMRF stimulation allows, through a mechanism not yet determined, circulating CAs to act on brain and affect brain function.


2014 ◽  
Vol 26 (5) ◽  
pp. 1131-1140 ◽  
Author(s):  
Malia Mason ◽  
Joe C. Magee ◽  
Susan T. Fiske

The negotiation of social order is intimately connected to the capacity to infer and track status relationships. Despite the foundational role of status in social cognition, we know little about how the brain constructs status from social interactions that display it. Although emerging cognitive neuroscience reveals that status judgments depend on the intraparietal sulcus, a brain region that supports the comparison of targets along a quantitative continuum, we present evidence that status judgments do not necessarily reduce to ranking targets along a quantitative continuum. The process of judging status also fits a social interdependence analysis. Consistent with third-party perceivers judging status by inferring whose goals are dictating the terms of the interaction and who is subordinating their desires to whom, status judgments were associated with increased recruitment of medial pFC and STS, brain regions implicated in mental state inference.


2010 ◽  
Vol 31 (1) ◽  
pp. 362-370 ◽  
Author(s):  
Giuseppe Pignataro ◽  
Elga Esposito ◽  
Ornella Cuomo ◽  
Rossana Sirabella ◽  
Francesca Boscia ◽  
...  

It has been recently shown that a short sublethal brain ischemia subsequent to a prolonged harmful ischemic episode may confer ischemic neuroprotection, a phenomenon termed ischemic postconditioning. Na+/Ca2+ exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, are plasma membrane ionic transporters widely distributed in the brain and involved in the control of Na+ and Ca2+ homeostasis and in the progression of stroke damage. The objective of this study was to evaluate the role of these three proteins in the postconditioning-induced neuroprotection. The NCX protein and mRNA expression was evaluated at different time points in the ischemic temporoparietal cortex of rats subjected to tMCAO alone or to tMCAO plus ischemic postconditioning. The results of this study showed that NCX3 protein and ncx3 mRNA were upregulated in those brain regions protected by postconditioning treatment. These changes in NCX3 expression were mediated by the phosphorylated form of the ubiquitously expressed serine/threonine protein kinase p-AKT, as the p-AKT inhibition prevented NCX3 upregulation. The relevant role of NCX3 during postconditioning was further confirmed by results showing that NCX3 silencing, induced by intracerebroventricular infusion of small interfering RNA (siRNA), partially reverted the postconditioning-induced neuroprotection. The results of this study support the idea that the enhancement of NCX3 expression and activity might represent a reasonable strategy to reduce the infarct extension after stroke.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1018
Author(s):  
Caitlyn A. Mullins ◽  
Ritchel B. Gannaban ◽  
Md Shahjalal Khan ◽  
Harsh Shah ◽  
Md Abu B. Siddik ◽  
...  

Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.


2016 ◽  
Vol 94 (10) ◽  
pp. 1074-1082 ◽  
Author(s):  
Dragan Hrncic ◽  
Jelena Mikić ◽  
Aleksandra Rasic-Markovic ◽  
Milica Velimirović ◽  
Tihomir Stojković ◽  
...  

The aim of this study was to examine the effects of a methionine-enriched diet on anxiety-related behavior in rats and to determine the role of the brain oxidative status in these alterations. Adult male Wistar rats were fed from the 30th to 60th postnatal day with standard or methionine-enriched diet (double content comparing with standard diet: 7.7 g/kg). Rats were tested in open field and light–dark tests and afterwards oxidative status in the different brain regions were determined. Hyperhomocysteinemia induced by methionine-enriched diet in this study decreased the number of rearings, as well as the time that these animals spent in the center of the open field, but increased index of thigmotaxy. Oxidative status was selectively altered in the examined regions. Lipid peroxidation was significantly increased in the cortex and nc. caudatus of rats developing hyperhomocysteinemia, but unaltered in the hippocampus and thalamus. Based on the results of this research, it could be concluded that hyperhomocysteinemia induced by methionine nutritional overload increased anxiety-related behavior in rats. These proanxiogenic effects could be, at least in part, a consequence of oxidative stress in the rat brain.


Neurosurgery ◽  
1991 ◽  
Vol 28 (2) ◽  
pp. 231-237 ◽  
Author(s):  
William T. Couldwell ◽  
Chi-Shing Zee ◽  
Michael L. J. Apuzzo

Abstract With increasing immigration from endemic regions, the incidence of neurocysticercosis in North America is rising. This retrospective study was undertaken to examine the role of surgery in those cases presenting with large cystic parenchymal and cisternal lesions in the current era of anthelminthic agents administered orally. A total of 237 patients presented with newly diagnosed neurocysticercosis to our institution over a recent 5-year period (mean age, 31.2 years). Among those who presented with cystic mass lesions predominantly affecting the brain parenchyma and cisternal spaces. 20 (8.4%; mean age, 40.2 years) with large cystic lesions subsequently underwent surgical intervention, either because of an emergent presentation or because they were refractory to medical management. Clinical presentation included increased intracranial pressure, focal neurological deficit, and seizure. Radiographic imaging (computed tomography and/or magnetic resonance imaging) demonstrated 12 cases with cisternal lesions, 7 with parenchymal lesions, and 1 involving both compartments. Based on imaging guidelines, 30 operative procedures (excluding shunt revisions) were performed (14 craniotomies, 8 cerebrospinal fluid diversions, 7 stereotactic procedures, and 1 burr hole drainage). Fifteen (75%) showed neurological or symptomatic improvement over a median follow-up period of 36.4 months. There were three surgery-related complications and no deaths.


2021 ◽  
Vol 12 ◽  
Author(s):  
Faranak Vahid-Ansari ◽  
Paul R. Albert

Serotonin is a key neurotransmitter that is implicated in a wide variety of behavioral and cognitive phenotypes. Originating in the raphe nuclei, 5-HT neurons project widely to innervate many brain regions implicated in the functions. During the development of the brain, as serotonin axons project and innervate brain regions, there is evidence that 5-HT plays key roles in wiring the developing brain, both by modulating 5-HT innervation and by influencing synaptic organization within corticolimbic structures. These actions are mediated by 14 different 5-HT receptors, with region- and cell-specific patterns of expression. More recently, the role of the 5-HT system in synaptic re-organization during adulthood has been suggested. The 5-HT neurons have the unusual capacity to regrow and reinnervate brain regions following insults such as brain injury, chronic stress, or altered development that result in disconnection of the 5-HT system and often cause depression, anxiety, and cognitive impairment. Chronic treatment with antidepressants that amplify 5-HT action, such as selective serotonin reuptake inhibitors (SSRIs), appears to accelerate the rewiring of the 5-HT system by mechanisms that may be critical to the behavioral and cognitive improvements induced in these models. In this review, we survey the possible 5-HT receptor mechanisms that could mediate 5-HT rewiring and assess the evidence that 5-HT-mediated brain rewiring is impacting recovery from mental illness. By amplifying 5-HT-induced rewiring processes using SSRIs and selective 5-HT agonists, more rapid and effective treatments for injury-induced mental illness or cognitive impairment may be achieved.


Author(s):  
Tomas Knapen

The human visual system is organized as a hierarchy of maps that share the retina's topography. Although retinotopic maps have been identified throughout the brain, how much of the brain is visually organized remains unknown. Here we demonstrate widespread stable visual organization beyond the traditional visual system by analyzing topographic connectivity with primary visual cortex during moviewatching, rest, and retinotopic mapping. Detailed visual-spatial organization derived from retinotopic connectivity is modulated by experimental condition. Specifically, traditionally visual regions alternate with default mode network and hippocampus in preferentially representing the center of the visual field. This visual role of hippocampus would allow it to implement sensory predictions by interfacing between abstract memories and concrete perceptions. These results indicate that pervasive sensory coding facilitates the communication between far-flung brain regions.


2022 ◽  
Author(s):  
Joana Cabral ◽  
Francesca Castaldo ◽  
Jakub Vohryzek ◽  
Vladimir Litvak ◽  
Christian Bick ◽  
...  

A rich repertoire of oscillatory signals is detected from human brains with electro- and magnetoencephalography (EEG/MEG). However, the principles underwriting coherent oscillations and their link with neural activity remain unclear. Here, we hypothesise that the emergence of transient brain rhythms is a signature of weakly stable synchronization between spatially distributed brain areas, occurring at network-specific collective frequencies due to non-negligible conduction times. We test this hypothesis using a phenomenological network model to simulate interactions between neural mass potentials (resonating at 40Hz) in the structural connectome. Crucially, we identify a critical regime where metastable oscillatory modes emerge spontaneously in the delta (0.5-4Hz), theta (4-8Hz), alpha (8-13Hz) and beta (13-30Hz) frequency bands from weak synchronization of subsystems, closely approximating the MEG power spectra from 89 healthy individuals. Grounded in the physics of delay-coupled oscillators, these numerical analyses demonstrate the role of the spatiotemporal connectome in structuring brain activity in the frequency domain.


Sign in / Sign up

Export Citation Format

Share Document