scholarly journals The NCX3 Isoform of the Na+/Ca2+ Exchanger Contributes to Neuroprotection Elicited by Ischemic Postconditioning

2010 ◽  
Vol 31 (1) ◽  
pp. 362-370 ◽  
Author(s):  
Giuseppe Pignataro ◽  
Elga Esposito ◽  
Ornella Cuomo ◽  
Rossana Sirabella ◽  
Francesca Boscia ◽  
...  

It has been recently shown that a short sublethal brain ischemia subsequent to a prolonged harmful ischemic episode may confer ischemic neuroprotection, a phenomenon termed ischemic postconditioning. Na+/Ca2+ exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, are plasma membrane ionic transporters widely distributed in the brain and involved in the control of Na+ and Ca2+ homeostasis and in the progression of stroke damage. The objective of this study was to evaluate the role of these three proteins in the postconditioning-induced neuroprotection. The NCX protein and mRNA expression was evaluated at different time points in the ischemic temporoparietal cortex of rats subjected to tMCAO alone or to tMCAO plus ischemic postconditioning. The results of this study showed that NCX3 protein and ncx3 mRNA were upregulated in those brain regions protected by postconditioning treatment. These changes in NCX3 expression were mediated by the phosphorylated form of the ubiquitously expressed serine/threonine protein kinase p-AKT, as the p-AKT inhibition prevented NCX3 upregulation. The relevant role of NCX3 during postconditioning was further confirmed by results showing that NCX3 silencing, induced by intracerebroventricular infusion of small interfering RNA (siRNA), partially reverted the postconditioning-induced neuroprotection. The results of this study support the idea that the enhancement of NCX3 expression and activity might represent a reasonable strategy to reduce the infarct extension after stroke.

1987 ◽  
Vol 252 (6) ◽  
pp. H1183-H1191
Author(s):  
C. Iadecola ◽  
P. M. Lacombe ◽  
M. D. Underwood ◽  
T. Ishitsuka ◽  
D. J. Reis

We studied whether adrenal medullary catecholamines (CAs) contribute to the metabolically linked increase in regional cerebral blood flow (rCBF) elicited by electrical stimulation of the dorsal medullary reticular formation (DMRF). Rats were anesthetized (alpha-chloralose, 30 mg/kg), paralyzed, and artificially ventilated. The DMRF was electrically stimulated with intermittent trains of pulses through microelectrodes stereotaxically implanted. Blood gases were controlled and, during stimulation, arterial pressure was maintained within the autoregulated range for rCBF. rCBF and blood-brain barrier (BBB) permeability were determined in homogenates of brain regions by using [14C]iodoantipyrine and alpha-aminoisobutyric acid (AIB), respectively, as tracers. Plasma CAs (epinephrine and norepinephrine) were measured radioenzymatically. DMRF stimulation increased rCBF throughout the brain (n = 5; P less than 0.01, analysis of variance) and elevated plasma CAs substantially (n = 4). Acute bilateral adrenalectomy abolished the increase in plasma epinephrine (n = 4), reduced the increases in flow (n = 6) in cerebral cortex (P less than 0.05), and abolished them elsewhere in brain (P greater than 0.05). Comparable effects on rCBF were obtained by selective adrenal demedullation (n = 7) or pretreatment with propranolol (1.5 mg/kg iv) (n = 5). DMRF stimulation did not increase the permeability of the BBB to AIB (n = 5). We conclude that the increases in rCBF elicited from the DMRF has two components, one dependent on, and the other independent of CAs. Since the BBB is impermeable to CAs and DMRF stimulation fails to open the BBB, the results suggest that DMRF stimulation allows, through a mechanism not yet determined, circulating CAs to act on brain and affect brain function.


2014 ◽  
Vol 26 (5) ◽  
pp. 1131-1140 ◽  
Author(s):  
Malia Mason ◽  
Joe C. Magee ◽  
Susan T. Fiske

The negotiation of social order is intimately connected to the capacity to infer and track status relationships. Despite the foundational role of status in social cognition, we know little about how the brain constructs status from social interactions that display it. Although emerging cognitive neuroscience reveals that status judgments depend on the intraparietal sulcus, a brain region that supports the comparison of targets along a quantitative continuum, we present evidence that status judgments do not necessarily reduce to ranking targets along a quantitative continuum. The process of judging status also fits a social interdependence analysis. Consistent with third-party perceivers judging status by inferring whose goals are dictating the terms of the interaction and who is subordinating their desires to whom, status judgments were associated with increased recruitment of medial pFC and STS, brain regions implicated in mental state inference.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1018
Author(s):  
Caitlyn A. Mullins ◽  
Ritchel B. Gannaban ◽  
Md Shahjalal Khan ◽  
Harsh Shah ◽  
Md Abu B. Siddik ◽  
...  

Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.


2016 ◽  
Vol 94 (10) ◽  
pp. 1074-1082 ◽  
Author(s):  
Dragan Hrncic ◽  
Jelena Mikić ◽  
Aleksandra Rasic-Markovic ◽  
Milica Velimirović ◽  
Tihomir Stojković ◽  
...  

The aim of this study was to examine the effects of a methionine-enriched diet on anxiety-related behavior in rats and to determine the role of the brain oxidative status in these alterations. Adult male Wistar rats were fed from the 30th to 60th postnatal day with standard or methionine-enriched diet (double content comparing with standard diet: 7.7 g/kg). Rats were tested in open field and light–dark tests and afterwards oxidative status in the different brain regions were determined. Hyperhomocysteinemia induced by methionine-enriched diet in this study decreased the number of rearings, as well as the time that these animals spent in the center of the open field, but increased index of thigmotaxy. Oxidative status was selectively altered in the examined regions. Lipid peroxidation was significantly increased in the cortex and nc. caudatus of rats developing hyperhomocysteinemia, but unaltered in the hippocampus and thalamus. Based on the results of this research, it could be concluded that hyperhomocysteinemia induced by methionine nutritional overload increased anxiety-related behavior in rats. These proanxiogenic effects could be, at least in part, a consequence of oxidative stress in the rat brain.


2019 ◽  
Author(s):  
Andreia Neves-Carvalho ◽  
Sara Duarte-Silva ◽  
Joana Silva ◽  
Bruno Almeida ◽  
Sasja Heetveld ◽  
...  

ABSTRACTThe ubiquitylation/deubiquitylation balance in cells is maintained by Deubiquitylating enzymes, including ATXN3. The precise role of this protein, mutated in SCA3, remains elusive, as few substrates for its deubiquitylating activity were identified. Therefore, we characterized the ubiquitome of neuronal cells lacking ATXN3, and found altered polyubiquitylation in a large proportion of proteins involved in RNA metabolism, including splicing factors. Using transcriptomic analysis and reporter minigenes we confirmed that splicing was globally altered in these cells. Among the targets with altered splicing was SRSF7 (9G8), a key regulator of MAPT (Tau) exon 10 splicing. Loss-of-function of ATXN3 led to a deregulation of MAPT exon 10 splicing resulting in a decreased 4R/3R-Tau ratio. Similar alterations were found in the brain of a SCA3 mouse and humans, pointing to a relevant role of this mechanism in SCA3, and establishing a previously unsuspected link between two key proteins involved in different neurodegenerative disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Faranak Vahid-Ansari ◽  
Paul R. Albert

Serotonin is a key neurotransmitter that is implicated in a wide variety of behavioral and cognitive phenotypes. Originating in the raphe nuclei, 5-HT neurons project widely to innervate many brain regions implicated in the functions. During the development of the brain, as serotonin axons project and innervate brain regions, there is evidence that 5-HT plays key roles in wiring the developing brain, both by modulating 5-HT innervation and by influencing synaptic organization within corticolimbic structures. These actions are mediated by 14 different 5-HT receptors, with region- and cell-specific patterns of expression. More recently, the role of the 5-HT system in synaptic re-organization during adulthood has been suggested. The 5-HT neurons have the unusual capacity to regrow and reinnervate brain regions following insults such as brain injury, chronic stress, or altered development that result in disconnection of the 5-HT system and often cause depression, anxiety, and cognitive impairment. Chronic treatment with antidepressants that amplify 5-HT action, such as selective serotonin reuptake inhibitors (SSRIs), appears to accelerate the rewiring of the 5-HT system by mechanisms that may be critical to the behavioral and cognitive improvements induced in these models. In this review, we survey the possible 5-HT receptor mechanisms that could mediate 5-HT rewiring and assess the evidence that 5-HT-mediated brain rewiring is impacting recovery from mental illness. By amplifying 5-HT-induced rewiring processes using SSRIs and selective 5-HT agonists, more rapid and effective treatments for injury-induced mental illness or cognitive impairment may be achieved.


Author(s):  
Tomas Knapen

The human visual system is organized as a hierarchy of maps that share the retina's topography. Although retinotopic maps have been identified throughout the brain, how much of the brain is visually organized remains unknown. Here we demonstrate widespread stable visual organization beyond the traditional visual system by analyzing topographic connectivity with primary visual cortex during moviewatching, rest, and retinotopic mapping. Detailed visual-spatial organization derived from retinotopic connectivity is modulated by experimental condition. Specifically, traditionally visual regions alternate with default mode network and hippocampus in preferentially representing the center of the visual field. This visual role of hippocampus would allow it to implement sensory predictions by interfacing between abstract memories and concrete perceptions. These results indicate that pervasive sensory coding facilitates the communication between far-flung brain regions.


Author(s):  
Peggy Mason

With the knowledge acquired from this book, the brain regions responsible for each of the symptoms suffered by Jean-Dominique Bauby can be identified. It is also possible to understand why thought, language, and memory were unaffected in Bauby. Bauby’s narrative is used to launch a consideration of the role of embodiment in affective experience. The experience of Clive Wearing who, after a bout of encephalitis, was left without the ability to make new declarative memories is introduced to illustrate the highly personal and individual nature of people’s reactions to disease or clinical impairment. The impact of disease does not stop with the patient but extends to the patient’s loved ones and caregivers. This is particularly true of patients with dementia or those in an altered state of consciousness. Finally the reader is encouraged to use their understanding of the nervous system to provide compassionate care for patients.


2018 ◽  
Vol 44 (2) ◽  
pp. E14 ◽  
Author(s):  
Jan Kubanek

The understanding of brain function and the capacity to treat neurological and psychiatric disorders rest on the ability to intervene in neuronal activity in specific brain circuits. Current methods of neuromodulation incur a tradeoff between spatial focus and the level of invasiveness. Transcranial focused ultrasound (FUS) is emerging as a neuromodulation approach that combines noninvasiveness with focus that can be relatively sharp even in regions deep in the brain. This may enable studies of the causal role of specific brain regions in specific behaviors and behavioral disorders. In addition to causal brain mapping, the spatial focus of FUS opens new avenues for treatments of neurological and psychiatric conditions. This review introduces existing and emerging FUS applications in neuromodulation, discusses the mechanisms of FUS effects on cellular excitability, considers the effects of specific stimulation parameters, and lays out the directions for future work.


2020 ◽  
Vol 318 (3) ◽  
pp. R634-R648 ◽  
Author(s):  
Zhigang Shi ◽  
Ding Zhao ◽  
Priscila A. Cassaglia ◽  
Virginia L. Brooks

In males, obesity increases sympathetic nerve activity (SNA), but the mechanisms are unclear. Here, we investigate insulin, via an action in the arcuate nucleus (ArcN), and downstream neuropathways, including melanocortin receptor 3/4 (MC3/4R) in the hypothalamic paraventricular nucleus (PVN) and dorsal medial hypothalamus (DMH). We studied conscious and α-chloralose-anesthetized Sprague-Dawley rats fed a high-fat diet, which causes obesity prone (OP) rats to accrue excess fat and obesity-resistant (OR) rats to maintain fat content, similar to rats fed a standard control (CON) diet. Nonspecific blockade of the ArcN with muscimol and specific blockade of ArcN insulin receptors (InsR) decreased lumbar SNA (LSNA), heart rate (HR), and mean arterial pressure (MAP) in OP, but not OR or CON, rats, indicating that insulin supports LSNA in obese males. In conscious rats, intracerebroventricular infusion of insulin increased MAP only in OP rats and also improved HR baroreflex function from subnormal to supranormal. The brain sensitization to insulin may elucidate how insulin can drive central SNA pathways when transport of insulin across the blood-brain barrier may be impaired. Blockade of PVN, but not DMH, MC3/4R with SHU9119 decreased LSNA, HR, and, MAP in OP, but not OR or CON, rats. Interestingly, nanoinjection of the MC3/4R agonist melanotan II (MTII) into the PVN increased LSNA only in OP rats, similar to PVN MTII-induced increases in LSNA in CON rats after blockade of sympathoinhibitory neuropeptide Y Y1 receptors. ArcN InsR expression was not increased in OP rats. Collectively, these data indicate that obesity increases SNA, in part via increased InsR signaling and downstream PVN MC3/4R.


Sign in / Sign up

Export Citation Format

Share Document