Jovian Planets

Author(s):  
Yuk L. Yung ◽  
William B. DeMore

The four giant planets in the outer solar system, Jupiter, Saturn, Uranus, and Neptune, are a distinct group by themselves. The essential astronomical and atmospheric aspects of these planets are summarized in table 5.1. The significance of this group in the chemistry of the solar system is briefly pointed out in chapter 4. These planets are composed primarily of the lightest elements, hydrogen and helium, which were captured from the solar nebula during formation. The planets have rocky cores made of heavier elements. In the case of Jupiter and Saturn the mass of the gas greatly exceeds that of the core, whereas for Uranus and Neptune the masses of gas and core are comparable. Due to the enormous gravity of the giant planets, little mass has escaped from their atmospheres. Hence, the bulk composition of these planets provides a good measure of the initial composition of the solar nebula from which they were derived. Of all planetary bodies in the solar system, the constituents of giant planets are the closest to the cosmic abundances of the elements. The chemistry of the atmospheres of the giant planets is interesting for the following reasons:… 1. chemistry in a dominantly reducing atmosphere 2. interplay between photochemistry and equilibrium chemistry 3. ion chemistry in polar auroral regions 4. heterogeneous chemistry of aerosols 5. chemistry of meteoritic debris 6. lack of a planetary "surface"… We briefly comment on these reasons in this section. Each topic will receive a more detailed treatment in later sections. First of all, the atmospheres of the Jovian planets are more than 90% hydrogen and helium. Since helium is inert, the atmospheric chemistry is dominated by hydrogen. Therefore, we would expect the most stable compounds of carbon, oxygen, nitrogen, and phosphorus to be CH4, H2O, NHa, and PHs. This is in fact confirmed by the available observed composition of the bulk atmospheres of these planets. However, in the upper atmospheres of these planets, the composition is controlled by photochemistry.

2005 ◽  
Vol 13 ◽  
pp. 891-893
Author(s):  
Thierry Fouchet

AbstractIn this brief summary, I present recent progress on our knowledge of the Giant Planets and Titan atmospheric composition, as well as the impact of this progress on our understanding of Solar System formation, and atmospheric chemistry.


1977 ◽  
Vol 39 ◽  
pp. 453-467 ◽  
Author(s):  
A. H. Delsemme

Empirical data are confronted with different hypotheses on the origin of comets. The hypotheses are classified into three categories: 1) Comets were condensed from the solar nebula and ejected later into the Oort’s cloud. 2) Comets were condensed in situ, more or less recently, on their present trajectories; 3) Reversing the arrow of time in the traditional evolution of comets. Only two hypotheses, both from the first category, are found to be in agreement with all empirical data. The first hypothesis explains the origin of the Oort’s cloud by the perturbations of the giant planets (mainly Uranus and Neptune and possibly Pluto) on a ring of proto-comets, during the final accretion stages of the solar system. The second hypothesis uses the fast mass loss of the solar nebula to expell an outer ring of proto-comets into elliptic trajectories. Although no empirical evidence requests that the Oort’s cloud be older than a few million years, its matter is not likely to be from a different reservoir than solar system stuff, and no satisfactory theory explains its formation more recently than 4,5 billion years ago.


2012 ◽  
Vol 20 (2) ◽  
pp. 276-290
Author(s):  
Michael Perryman

This article relates two topics of central importance in modern astronomy – the discovery some 15 years ago of the first planets around other stars (referred to as exoplanets), and the centuries-old problem of understanding the origin of our own solar system, with its planets, planetary satellites, asteroids, and comets. The surprising diversity of exoplanets, of which more than 500 have already been discovered, has required new models to explain their formation and evolution. In turn, these models explain, rather naturally, a number of important features of our own solar system, amongst them the masses and orbits of the ‘terrestrial’ and ‘gas giant’ planets, the presence and distribution of asteroids and comets, the origin and impact cratering of the Moon, and the existence of water on Earth.


2016 ◽  
Vol 2 (12) ◽  
pp. e1601658 ◽  
Author(s):  
Brandon C. Johnson ◽  
Kevin J. Walsh ◽  
David A. Minton ◽  
Alexander N. Krot ◽  
Harold F. Levison

The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My.


1977 ◽  
Vol 39 ◽  
pp. 483-484
Author(s):  
V. S. Safronov

Although the existence of Oort’s cometary cloud has been generally accepted, his hypothesis on its origin has been repeatedly called into question, in particular because of the large mass that Jupiter would also have simultaneously ejected out of the solar system. However, the extremely slow growth of particles in regions of small density seems to rule out that comets condensed “in situ” at their present large distances. Also, the accumulation of interstellar grains in satellite disks orbiting around the primitive solar nebula seems an “ad hoc” hypothesis that cannot be proved or disproved. Therefore, the most reasonable hypothesis is that comets were ejected from the region of the giant planets as a natural by-product of their accretion.


2010 ◽  
Vol 6 (S276) ◽  
pp. 212-217 ◽  
Author(s):  
Eliza M. R. Kempton

AbstractExtrasolar super-Earths likely have a far greater diversity in their atmospheric properties than giant planets. Super-Earths (planets with masses between 1 and 10 M⊕) lie in an intermediate mass regime between gas/ice giants like Neptune and rocky terrestrial planets like Earth and Venus. While some super-Earths (especially the more massive ones) may retain large amounts of hydrogen either from accretion processes or subsequent surface outgassing, other super-Earths should have atmospheres composed of predominantly heavier molecules, similar to the atmospheres of the rocky planets and moons of our Solar System. Others still may be entirely stripped of their atmospheres and remain as bare rocky cores. Of the two currently known transiting super-Earths one (GJ 1214b) likely falls into the former category with a thick atmosphere, while the other (CoRoT-7b) falls into the latter category with a very thin or nonexistent atmosphere. I review some of the theoretical work on super-Earth atmospheres, and I present methods for determining the bulk composition of a super-Earth atmosphere.


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Author(s):  
O. Mousis ◽  
D. H. Atkinson ◽  
R. Ambrosi ◽  
S. Atreya ◽  
D. Banfield ◽  
...  

AbstractRemote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our Solar System. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases’ abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe. Here we describe the main scientific goals to be addressed by the future in situ exploration of Saturn, Uranus, and Neptune, placing the Galileo probe exploration of Jupiter in a broader context. An atmospheric entry probe targeting the 10-bar level would yield insight into two broad themes: i) the formation history of the giant planets and that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. An atmospheric probe could represent a significant ESA contribution to a future NASA New Frontiers or flagship mission to be launched toward Saturn, Uranus, and/or Neptune.


Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


Icarus ◽  
1993 ◽  
Vol 106 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Frank H. Shu ◽  
Doug Johnstone ◽  
David Hollenbach
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document