Active Microwave Systems for Monitoring Drought Stress

Author(s):  
Anne M. Smith

Remote sensing can provide timely and economical monitoring of large areas. It provides the ability to generate information on a variety of spatial and temporal scales. Generally, remote sensing is divided into passive and active depending on the sensor system. The majority of remote-sensing studies concerned with drought monitoring have involved visible–infrared sensor systems, which are passive and depend on the sun’s illumination. Radar (radio detection and ranging) is an active sensor system that transmits energy in the microwave region of the electromagnetic spectrum and measures the energy reflected back from the landscape target. The energy reflected back is called backscatter. The attraction of radar over visible– infrared remote sensing (chapters 5 and 6) is its independence from the sun, enabling day/night operations, as well as its ability to penetrate cloud and obtain data under most weather conditions. Thus, unlike visible–infrared sensors, radar offers the opportunity to acquire uninterrupted information relevant to drought such as soil moisture and vegetation stress. Drought conditions manifest in multiple and complex ways. Accordingly, a large number of drought indices have been defined to signal abnormally dry conditions and their effects on crop growth, river flow, groundwater, and so on (Tate and Gustard, 2000). In the field of radar remote sensing, much work has been devoted to developing algorithms to retrieve geophysical parameters such as soil moisture, crop biomass, and vegetation water content. In principle, these parameters would be highly relevant for monitoring agricultural drought. However, despite the existence of a number of radar satellite systems, progress in the use of radar in environmental monitoring, particularly in respect to agriculture, has been slower than anticipated. This may be attributed to the complex nature of radar interactions with agricultural targets and the suboptimal configuration of the satellite sensors available in the 1990s (Ulaby, 1998; Bouman et al., 1999). Because most attention is still devoted to the problem of deriving high-quality soil moisture and vegetation products, there have been few investigations on how to combine such radar products with other data and models to obtain value-added agricultural drought products.

2021 ◽  
Author(s):  
Martin Hirschi ◽  
Bas Crezee ◽  
Sonia I. Seneviratne

<p>Drought events cause multiple impacts on the environment, the society and the economy. Here, we analyse recent major drought events with different metrics using a common framework. The analysis is based on current reanalysis (ERA5, ERA5-Land, MERRA-2) and merged remote-sensing products (ESA-CCI soil moisture, gridded satellite soil moisture from the Copernicus Climate Data Store), focusing on soil moisture (or agricultural) drought. The events are characterised by their severity, magnitude, duration and spatial extent, which are calculated from standardised daily anomalies of surface and root-zone soil moisture. We investigate the ability of the different products to represent the droughts and set the different events in context to each other. The considered products also offer opportunities for drought monitoring since they are available in near-real time.</p><p>All investigated products are able to represent the investigated drought events. Overall, ERA5 and ERA5-Land often show the strongest, and the remote-sensing products often weaker responses based on surface soil moisture. The weaker severities of the events in the remote-sensing products are both related to shorter event durations as well as less pronounced average negative standardised soil moisture anomalies, while the magnitudes (i.e., the minimum of the standardised anomalies over time) are comparable to the reanalysis products. Differing global distributions of long-term trends may explain some differences in the drought responses of the products. Also, the lower penetration depth of microwave remote sensing compared to the top layer of the involved land surface models could explain the partly weaker negative standardized soil moisture anomalies in the remote-sensing products during the investigated events. In the root zone (based on the reanalysis products), the drought events often show prolonged durations, but weaker magnitudes and smaller spatial extents.</p>


2020 ◽  
Author(s):  
Saeed Khabbazan ◽  
Ge Gao ◽  
Paul Vermunt ◽  
Susan Steele-Dunne ◽  
Jasmeet Judge ◽  
...  

<p>Vegetation Optical Depth (VOD) is directly related to Vegetation Water Content (VWC), which can be used in different applications including crop health monitoring, water resources management and drought detection. Moreover, VOD is used to account for the attenuating effect of vegetation in soil moisture retrieval using microwave remote sensing.</p><p>Commonly, to retrieve soil moisture and VOD from microwave remote sensing, VWC is considered to be vertically homogeneous and relatively static.  However, nonuniform vertical distribution of water inside the vegetation may lead to unrealistic retrievals in agricultural areas. Therefore, it is important to improve the understanding of the relation between vegetation optical depth and distribution of bulk vegetation water content during the entire growing season.</p><p>The goal of this study is to investigate the effect of different factors such as phenological stage, different crop elements and nonuniform distribution of internal vegetation water content on VOD. Backscatter data were collected every 15 minutes using a tower-based, fully polarimetric, L-band radar. The methodology of Vreugdenhil et al. [1] was adapted to estimate VOD from single-incidence angle backscatter data in each polarization.</p><p>In order to characterize the vertical distribution of VWC, pre-dawn destructive sampling was conducted three times a week for a full growing season. VWC could therefore be analyzed by constituent (leaf, stem, ear) or by height.</p><p>A temporal correlation analysis showed that the relation between VOD and VWC during the growing season is not constant. The assumed linear relationship is only valid during the vegetative growth stages for corn.  Furthermore, the sensitivity of VOD to various plant components (leaf, stem and ear) varies between phenological stages and depends on polarization.</p><p>Improved understanding of VOD can contribute to improved consideration of vegetation in soil moisture retrieval algorithms. More importantly, it is essential for the interpretation of VOD data in a wide range of vegetation monitoring applications.</p><p>[1] M. Vreugdenhil,W. A. Dorigo,W.Wagner, R. A. De Jeu, S. Hahn, andM. J. VanMarle, “Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 6, pp. 3513–3531, 2016.</p>


2021 ◽  
pp. 955-961
Author(s):  
Hui Kong ◽  
Dan Wu

Based on MODIS data, soil moisture data and field survey data from 2014 to 2018, the consistency of temperature vegetation drought index (TVDL), normalized vegetation water content index (NDWL), vegetation water supply index (VSWI) and soil moisture at 15cm depth (SM) in apple growth in Fuxian county was investigated. Results showed that the spatial and temporal consistency between VSWI and SM calculated by the enhanced vegetation index (EVI) was best; the sensitivity of remote sensing indexes to soil moisture was different in different apple growth stages. The sensitivity of VSWI was the most obvious in different growth stages, and the sensitivity of soil moisture was higher than that of germination, flowering, fruit expansion and maturity. The research findings were consistent with the law of water demand in different growth stages of apple in Fuxian county and the characteristics of precipitation and drought in Fuxian county. The present results could provide a reference for soil moisture monitoring of apple growth by remote sensing. Bangladesh J. Bot. 50(3): 955-961, 2021 (September) Special


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2777
Author(s):  
Tao Cheng ◽  
Siyang Hong ◽  
Bensheng Huang ◽  
Jing Qiu ◽  
Bikui Zhao ◽  
...  

Drought is the costliest disaster around the world and in China as well. Northeastern China is one of China’s most important major grain producing areas. Frequent droughts have harmed the agriculture of this region and further threatened national food security. Therefore, the timely and effective monitoring of drought is extremely important. In this study, the passive microwave remote sensing soil moisture data, i.e., the SMOS soil moisture (SMOS-SM) product, was compared to several in situ meteorological indices through Pearson correlation analysis to assess the performance of SMOS-SM in monitoring drought in northeastern China. Then, maps based on SMOS-SM and in situ indices were created for July from 2010 to 2015 to identify the spatial pattern of drought distributions. Our results showed that the SMOS-SM product had relatively high correlation with in situ indices, especially SPI and SPEI values of a nine-month scale for the growing season. The drought patterns shown on maps generated from SPI-9, SPEI-9 and sc-PDSI were also successfully captured using the SMOS-SM product. We found that the SMOS-SM product effectively monitored drought patterns in northeastern China, and this capacity would be enhanced when field capacity information became available.


2020 ◽  
Author(s):  
Maria Jose Escorihuela ◽  
Pere Quintana Quintana-Seguí ◽  
Vivien Stefan ◽  
Jaime Gaona

<p>Drought is a major climatic risk resulting from complex interactions between the atmosphere, the continental surface and water resources management. Droughts have large socioeconomic impacts and recent studies show that drought is increasing in frequency and severity due to the changing climate.</p><p>Drought is a complex phenomenon and there is not a common understanding about drought definition. In fact, there is a range of definitions for drought. In increasing order of severity, we can talk about: meteorological drought is associated to a lack of precipitation, agricultural drought, hydrological drought and socio-economic drought is when some supply of some goods and services such as energy, food and drinking water are reduced or threatened by changes in meteorological and hydrological conditions. 
</p><p>A number of different indices have been developed to quantify drought, each with its own strengths and weaknesses. The most commonly used are based on precipitation such as the precipitation standardized precipitation index (SPI; McKee et al., 1993, 1995), on precipitation and temperature like the Palmer drought severity index (PDSI; Palmer 1965), others rely on vegetation status like the crop moisture index (CMI; Palmer, 1968) or the vegetation condition index (VCI; Liu and Kogan, 1996). Drought indices can also be derived from climate prediction models outputs. Drought indices base on remote sensing based have traditionally been limited to vegetation indices, notably due to the difficulty in accurately quantifying precipitation from remote sensing data. The main drawback in assessing drought through vegetation indices is that the drought is monitored when effects are already causing vegetation damage. In order to address drought in their early stages, we need to monitor it from the moment the lack of precipitation occurs.</p><p>Thanks to recent technological advances, L-band (21 cm, 1.4 GHz) radiometers are providing soil moisture fields among other key variables such as sea surface salinity or thin sea ice thickness. Three missions have been launched: the ESA’s SMOS was the first in 2009 followed by Aquarius in 2011 and SMAP in 2015.</p><p>A wealth of applications and science topics have emerged from those missions, many being of operational value (Kerr et al. 2016, Muñoz-Sabater et al. 2016, Mecklenburg et al. 2016). Those applications have been shown to be key to monitor the water and carbon cycles. Over land, soil moisture measurements have enabled to get access to root zone soil moisture, yield forecasts, fire and flood risks, drought monitoring, improvement of rainfall estimates, etc.</p><p>The advent of soil moisture dedicated missions (SMOS, SMAP) paves the way for drought monitoring based on soil moisture data. Initial assessment of a drought index based on SMOS soil moisture data has shown to be able to precede drought indices based on vegetation by 1 month (Albitar et al. 2013).</p><p>In this presentation we will be analysing different drought episodes in the Ebro basin using both soil moisture and vegetation based indices to compare their different performances and test the hypothesis that soil moisture based indices are earlier indicators of drought than vegetation ones.</p>


2020 ◽  
Vol 12 (4) ◽  
pp. 614 ◽  
Author(s):  
Komi Edokossi ◽  
Andres Calabia ◽  
Shuanggen Jin ◽  
Iñigo Molina

The understanding of land surface-atmosphere energy exchange is extremely important for predicting climate change and weather impacts, particularly the influence of soil moisture content (SMC) on hydrometeorological and ecological processes, which are also linked to human activities. Unfortunately, traditional measurement methods are expensive and cumbersome over large areas, whereas measurements from satellite active and passive microwave sensors have shown advantages for SMC monitoring. Since the launch of the first passive microwave satellite in 1978, more and more progresses have been made in monitoring SMC from satellites, e.g., the Soil Moisture Active and Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) missions in the last decade. Recently, new methods using signals of opportunity have been emerging, highlighting the Global Navigation Satellite Systems-Reflectometry (GNSS-R), which has wide applications in Earth’s surface remote sensing due to its numerous advantages (e.g., revisiting time, global coverage, low cost, all-weather measurements, and near real-time) when compared to the conventional observations. In this paper, a detailed review on the current SMC measurement techniques, retrieval approaches, products, and applications is presented, particularly the new and promising GNSS-R technique. Recent advances, future prospects and challenges are given and discussed.


2011 ◽  
Vol 15 (9) ◽  
pp. 2881-2894 ◽  
Author(s):  
Z. Y. Wu ◽  
G. H. Lu ◽  
L. Wen ◽  
C. A. Lin

Abstract. The 1951–2009 drought history of China is reconstructed using daily soil moisture values generated by the Variable Infiltration Capacity (VIC) land surface macroscale hydrology model. VIC is applied over a grid of 10 458 points with a spatial resolution of 30 km × 30 km, and is driven by observed daily maximum and minimum air temperature and precipitation from 624 long-term meteorological stations. The VIC soil moisture is used to calculate the Soil Moisture Anomaly Percentage Index (SMAPI), which can be used as a measure of the severity of agricultural drought on a global basis. We have developed a SMAPI-based drought identification procedure for practical uses in the identification of both grid point and regional drought events. As a result, a total of 325 regional drought events varying in time and strength are identified from China's nine drought study regions. These drought events can thus be assessed quantitatively at different spatial and temporal scales. The result shows that the severe drought events of 1978, 2000 and 2006 are well reconstructed, which indicates that the SMAPI is capable of identifying the onset of a drought event, its progression, as well as its termination. Spatial and temporal variations of droughts in China's nine drought study regions are studied. Our result shows that on average, up to 30% of the total area of China is prone to drought. Regionally, an upward trend in drought-affected areas has been detected in three regions (Inner Mongolia, Northeast and North) from 1951–2009. However, the decadal variability of droughts has been weak in the rest of the five regions (South, Southwest, East, Northwest, and Tibet). Xinjiang has even been showing steadily wetter since the 1950s. Two regional dry centres are discovered in China as the result of a combined analysis on the occurrence of drought events from both grid points and drought study regions. The first centre is located in the area partially covered by the North and the Northwest, which extends to the southeastern portion of Inner Mongolia and the southwest part of Northeast. The second one is found on the central to southern portion of the South. Our study demonstrates the applicability and the value of using modeled soil moisture for reconstructing drought histories, and the SMAPI is useful for analyzing drought at different spatial and temporal scales.


2007 ◽  
Vol 38 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Wolfgang Wagner ◽  
Günter Blöschl ◽  
Paolo Pampaloni ◽  
Jean-Christophe Calvet ◽  
Bizzarro Bizzarri ◽  
...  

Microwave remote sensing of soil moisture has been an active area of research since the 1970s but has yet found little use in operational applications. Given recent advances in retrieval algorithms and the approval of a dedicated soil moisture satellite, it is time to re-assess the potential of various satellite systems to provide soil moisture information for hydrologic applications in an operational fashion. This paper reviews recent progress made with retrieving surface soil moisture from three types of microwave sensors – radiometers, Synthetic Aperture Radars (SARs), and scatterometers. The discussion focuses on the operational readiness of the different techniques, considering requirements that are typical for hydrological applications. It is concluded that operational coarse-resolution (25–50 km) soil moisture products can be expected within the next few years from radiometer and scatterometer systems, while scientific and technological breakthroughs are still needed for operational soil moisture retrieval at finer scales (<1 km) from SAR. Also, further research on data assimilation methods is needed to make best use of the coarse-resolution surface soil moisture data provided by radiometer and scatterometer systems in a hydrologic context and to fully assess the value of these data for hydrological predictions.


Sign in / Sign up

Export Citation Format

Share Document