Catastrophic nuclear terrorism: a preventable peril

Author(s):  
Gary Ackerman ◽  
William C. Potter

One can conceive of at least three potentially catastrophic events involving the energy of the atom: a nuclear accident in which massive quantities of radiation inadvertently are released into the environment including inadvertent nuclear missile launches; nuclear war among nation-states; and nuclear violence inflicted by non-state actors. This chapter focuses on the last of these threats – the dangers posed by nuclear terrorism, a phenomenon that lies at the nexus between what are widely considered to be two of the primary security threats of the modern era. Non-state actors have essentially four mechanisms by which they can exploit civilian and military nuclear assets intentionally to serve their terrorist1 goals: • the dispersal of radioactive material by conventional explosives or other means; • attacks against or sabotage of nuclear facilities, in particular nuclear power plants and fuel storage sites, causing the release of radioactivity; • the theft, purchase, or receipt of fissile material leading to the fabrication and detonation of a crude nuclear explosive, usually referred to as an improvised nuclear device (IND); and • the theft, purchase, or receipt and detonation of an intact nuclear weapon. All of these nuclear threats are real; all merit the attention of the international community; and all require the expenditure of significant resources to reduce their likelihood and potential impact. The threats, however, are different and vary widely in their probability of occurrence, in consequences for human and financial loss, and in the ease with which intervention might reduce destructive outcomes (for a detailed analysis, see Ferguson and Potter, 2005). Nuclear terrorism experts generally agree that the nuclear terror scenarios withthehighestconsequences–thoseinvolvingnuclearexplosives–aretheleast likely to occur because they are the most difficult to accomplish. Conversely, the scenarios with the least damaging consequences – those involving the release of radioactivity but no nuclear explosion – are the most likely to occur because they are the easiest to carry out. Constructing and detonating an IND, for example, is far more challenging than building and setting off a radiological dispersal device (RDD), because the former weapon is far more complex technologically and because the necessary materials are far more difficult to obtain.

2021 ◽  
Vol 2021 (3) ◽  
pp. 39-46
Author(s):  
A. Metelkov

The article analyzes the problem of possible threats with the use of aircraft captured by terrorists or controlled unmanned aerial vehicles in relation to nuclear energy use facilities. In the context of preventing acts of nuclear terrorism, the urgent task is to protect nuclear facilities from deliberate attacks by civilian airliners operated by terrorists. On the basis of the materials of publications, the influence of external extreme loads acting on the design of nuclear power plants, their features during the fall of aircraft of different types is studied. As a conclusion, the author notes that improving the safety of nuclear power plants and other radiation-hazardous facilities, minimizing possible consequences from aircraft strikes are important areas in risk management and their protection from acts of nuclear terrorism by combining organizational measures to combat terrorism and nuclear security measures.


Author(s):  
Oleksandr Klevtsov ◽  
Artem Symonov ◽  
Serhii Trubchaninov

The chapter is devoted to the issues of cyber security assessment of instrumentation and control systems (I&C systems) of nuclear power plants (NPP). The authors examined the main types of potential cyber threats at the stages of development and operation of NPP I&C systems. Examples of real incidents at various nuclear facilities caused by intentional cyber-attacks or unintentional computer errors during the maintenance of the software of NPP I&C systems are given. The approaches to vulnerabilities assessment of NPP I&C systems are described. The scope and content of the assessment and periodic reassessment of cyber security of NPP I&C systems are considered. An approach of assessment to cyber security risks is described.


2019 ◽  
Vol 186 (4) ◽  
pp. 524-529
Author(s):  
Si Young Kim

Abstract The intercomparison test is a quality assurance activity performed for internal dose assessment. In Korea, the intercomparison test on internal dose assessment was carried out for nuclear facilities in May 2018. The test involved four nuclear facilities in Korea, and seven exposure scenarios were applied. These scenarios cover the intake of 131I, a uranium mixture, 60Co and tritium under various conditions. This paper only reviews the participant results of three scenarios pertinent to the operation of nuclear power plants and adopts the statistical evaluation method, used in international intercomparison tests, to determine the significance values of the results. Although no outliers were established in the test, improvements in the internal dose assessment procedure were derived. These included the selection of intake time, selection of lung absorption type according to the chemical form and consideration of the contribution of previous intake.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
You Shi ◽  
Dong Ning ◽  
Yi-zhong Yang

Boron carbide (B4C) particle-reinforced aluminum matrix composite is the key material for use as neutron absorber plate in fuel storage applications for Generation III advanced passive nuclear power plants in China. This material has once depended upon importing with various restrictions so that it has meaningful practical significance to realize the localized manufacturing for this material in China. More importantly, since it is the first time for this material to be used in domestic plant, particular care should be taken to assure the formal supplied products exhibit high stabilized and reliable service in domestic nuclear engineering. This paper initiates and proposes a principle design framework from technical view in qualification requirements for this material so as to guide the practical engineering application. Aiming at neutron absorber materials supplied under practical manufacturing condition in engineering delivery, the qualification requirements define B4C content, matrix chemistry, 10B isotope, bulk density, 10B areal density, mechanical property, and microstructure as key criteria for material performance. The uniformity assessment as to different locations of this material is also required from at least three lots of material. Only qualified material meeting all of the qualification requirements should proceed to be verified by lifetime testing such as irradiation, corrosion, and thermal aging testing. Systematic and comprehensive performance assessments and verification for process stabilization could be achieved through the above qualification. The long-term service for this neutron absorber material in reliable and safe way could be convincingly expected in spent fuel storage application in China.


2016 ◽  
Vol 7 (2) ◽  
pp. 42-49
Author(s):  
Nick Shykinov ◽  
Robert Rulko ◽  
Dariusz Mroz

Abstract In the context of energy demands by growing economies, climate changes, fossil fuel pricing volatility, and improved safety and performance of nuclear power plants, many countries express interest in expanding or acquiring nuclear power capacity. In the light of the increased interest in expanding nuclear power the supply chain for nuclear power projects has received more attention in recent years. The importance of the advanced planning of procurement and manufacturing of components of nuclear facilities is critical for these projects. Many of these components are often referred to as long-lead items. They may be equipment, products and systems that are identified to have a delivery time long enough to affect directly the overall timing of a project. In order to avoid negatively affecting the project schedule, these items may need to be sourced out or manufactured years before the beginning of the project. For nuclear facilities, long-lead items include physical components such as large pressure vessels, instrumentation and controls. They may also mean programs and management systems important to the safety of the facility. Authorized nuclear operator training, site evaluation programs, and procurement are some of the examples. The nuclear power industry must often meet very demanding construction and commissioning timelines, and proper advanced planning of the long-lead items helps manage risks to project completion time. For nuclear components there are regulatory and licensing considerations that need to be considered. A national nuclear regulator must be involved early to ensure the components will meet the national legal regulatory requirements. This paper will discuss timing considerations to address the regulatory compliance of nuclear long-lead items.


Author(s):  
Sangmyeon Ahn ◽  
Jungjoon Lee ◽  
Chanwoo Jeong ◽  
Kyungwoo Choi

We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don’t have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA’s safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA’s Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA’s safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards.


Author(s):  
Danying Gu ◽  
Shuhui Zhang ◽  
Zhonghe Ning

The reviewing of operating experience at nuclear power plants (NPP) is not only critically important to safe and reliable operations, but also useful to guide the design of new plants which are similar to the current one under review. How to identify and analyze the safety-related operating experience and then implement a more extensive review is a vital and challengeable issue. In this paper, a methodology of human factor engineering (HFE) operating experience review (OER) is proposed for NPP. The need for the application of HFE in the life cycle activities of NPP and other nuclear facilities has been demonstrated by plant operating histories and regulatory and industry reviews. As a very important element of HFE, the OER is performed from the beginning of the design process. The main purpose of performing an OER is to verify that the applicant has identified and analyzed HFE-related safety problems and issues in previous designs that are similar to the current one. In this way, negative features associated with predecessor designs may be avoided in the current NPP design while retaining positive features. The research of OER concentrates on the aspect of review criterion, scope and implementation procedure of the HFE-related operating experience. As the NRC requirement, the scope of operating experience can be divided into six types in accordance with sources of information. The implementation procedures of USA and China are introduced, respectively. The resolution of HFE OER issues involve function allocation, changes in automation, HSI equipment design, procedures, training, and so forth. The OER conclusions can contribute to other HFE activities and improve the safety, reliability and usability of the HSI design in NPP.


Author(s):  
Romain Mege ◽  
Nicolas Jobert

In nuclear power plants, some structures are not anchored and lay directly on the ground. This is the case for fuel storage racks. As a safety issue, one has to evaluate precisely the behavior of this sliding structure, and in particular, the cumulated sliding displacement during a seismic event in order to prevent any impact with other components. During a seismic event, the unanchored structure can slide, rotate and tilt. The aim of this paper is to present analytical solutions to estimate the sliding amplitudes of different simplified systems which represent a given dynamic behavior. These simplified models are: a sliding mass, a sliding spring-masses system and a complex sliding structure defined by its eigenmodes. Each simplified system corresponds to a different set of assumptions made on the flexibility of the structure. Two analytical solutions are presented in this article: single sliding mass and a sliding spring-masses system. The analytical solutions are obtained considering the different phases of the movement and the continuity between each phase. The results are then compared to the values computed with the commercial Finite Element package ANSYS™. The analytical curves show a good fit of the computational results.


Author(s):  
David R Desaulniers ◽  
Stephen Fleger

Since 1980 the Institute of Electrical and Electronics Engineers (IEEE) has supported development of human factors (HF) standards. Within IEEE, Subcommittee 5 (SC5) of the Nuclear Power Engineering Committee develops and maintains HF standards applicable to nuclear facilities. These standards are structured in a hierarchical fashion. The top-level standard (IEEE Std. 1023) defines the HF tasks required to support the integration of human performance into the design process. Five lower tier documents (IEEE Std. 845, 1082, 1289, 1786 and 1707) expand upon the upper tier standard. Presently, two new HF standards projects are underway; one to provide HF guidance for the validation of the system interface design and integrated systems operation and another for designing and developing computer-based displays for monitoring and control of nuclear facilities. SC5 is also involved in outreach activities, including sponsorship of a series of conferences on human factors and nuclear power plants.


Author(s):  
Leopold Weil ◽  
Bernd Rehs

In Germany, altogether 19 nuclear power plants (NPPs) and prototype reactors have been permanently shut down. For 15 NPPs the dismantling is in progress with “green-field conditions” as planning target. Two units were completely dismantled and two are in safe enclosure. The main legal provision for all aspects of the peaceful use of nuclear energy in Germany is the Atomic Energy Act (AtG), which also contains the basic legal conditions for the decommissioning of nuclear facilities. It stipulates that decommissioning is subject to a licence by the regulatory body of the respective Federal State (Land). An emerging decommissioning practice in Germany is the removal of complete undismantled large components and their transport to interim storage facilities. During the period of storage, the radionuclide inventory of the components will decrease due to radioactive decay and the subsequent segmentation of the components can be done with less radiation protection effort. The commissioning of the Konrad repository in the near future might have consequences on planning of decommissioning, regarding the selection of a decommissioning strategy and the waste management.


Sign in / Sign up

Export Citation Format

Share Document