Evolutionary Development of Marine Larvae

Access to a growing number of marine invertebrates with genetic and genomic tools has broadened our understanding of the diversity of developmental mechanisms, informing our understanding of larval evolution by allowing the identification of shared or divergent programs for the formation of body plan patterning and organ formation. Two such genetic programs are the apical plate patterning network and the hox/parahox trunk and gut patterning network common to larval and adult forms, respectively. While mounting evidence supports an ancient origin at the base of the Bilateria for both adult and larval forms, it is clear that many distinct organs and structures have appeared independently and can be shifted between the larval and adult phase frequently. Future advances in our understanding of larval evolution are likely to emerge from exhaustive studies of marine invertebrate cell types by single-cell sequencing technologies and through the study of the genetic basis of the metamorphic transition.

2021 ◽  
Vol 22 (14) ◽  
pp. 7253
Author(s):  
Georgiana Neag ◽  
Melissa Finlay ◽  
Amy J. Naylor

Interaction between endothelial cells and osteoblasts is essential for bone development and homeostasis. This process is mediated in large part by osteoblast angiotropism, the migration of osteoblasts alongside blood vessels, which is crucial for the homing of osteoblasts to sites of bone formation during embryogenesis and in mature bones during remodeling and repair. Specialized bone endothelial cells that form “type H” capillaries have emerged as key interaction partners of osteoblasts, regulating osteoblast differentiation and maturation and ensuring their migration towards newly forming trabecular bone areas. Recent revolutions in high-resolution imaging methodologies for bone as well as single cell and RNA sequencing technologies have enabled the identification of some of the signaling pathways and molecular interactions that underpin this regulatory relationship. Similarly, the intercellular cross talk between endothelial cells and entombed osteocytes that is essential for bone formation, repair, and maintenance are beginning to be uncovered. This is a relatively new area of research that has, until recently, been hampered by a lack of appropriate analysis tools. Now that these tools are available, greater understanding of the molecular relationships between these key cell types is expected to facilitate identification of new drug targets for diseases of bone formation and remodeling.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 161
Author(s):  
Irene Deidda ◽  
Roberta Russo ◽  
Rosa Bonaventura ◽  
Caterina Costa ◽  
Francesca Zito ◽  
...  

Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.


1992 ◽  
Vol 49 (5) ◽  
pp. 1010-1017 ◽  
Author(s):  
Nicolas S. Bloom

Total mercury, monomethylmercury (CH3Hg), and dimethylmercury ((CH3)2Hg) in edible muscle were examined in 229 samples, representing seven freshwater and eight saltwater fish species and several species of marine invertebrates using ultraclean techniques. Total mercury was determined by hot HNO3/H2SO4/BrClldigestion, SnCl2 reduction, purging onto gold, and analysis by cold vapor atomic fluorescence spectrometry (CVAFS). Methylmercury was determined by KOH/methanol digestion using aqueous phase ethylation, cryogenic gas chromatography, and CVAFS detection. Total mercury and CH3Hg concentrations varied from 0.011 to 2.78 μg∙g−1 (wet weight basis, as Hg) for all samples, while no sample contained detectable (CH3)2Hg (<0.001 μg∙g−1 as Hg). The observed proportion of total mercury (as CH3Hg) ranged from 69 to 132%, with a relative standard deviation for quintuplicate analysis of about 10%; nearly all of this variability can be explained by the analytical variability of total mercury and CH3Hg. Poorly homogenized samples showed greater variability, primarily because total mercury and CH3Hg were measured on separate aliquots, which vary in mercury concentration, not speciation. I conclude that for all species studied, virtually ail (>95%) of the mercury present is as CH3Hg and that past reports of substantially lower CH3Hg fractions may have been biased by analytical and homogeneity variability.


The Holocene ◽  
2018 ◽  
Vol 28 (12) ◽  
pp. 1894-1908
Author(s):  
Andréanne Bourgeois-Roy ◽  
Hugo Crites ◽  
Pascal Bernatchez ◽  
Denis Lacelle ◽  
André Martel

The late Pleistocene–early Holocene transition period was characterized by rapid environmental change. Here, we investigate the impact of these changes on the marine invertebrates living in a shallow inlet of the post-glacial Goldthwait Sea. The site is located near Baie-Comeau (QC, Canada), where a number of remarkably well-preserved shell deposits are found along the Rivière aux Anglais Valley on the north shore of the St. Lawrence maritime estuary. Seven phyla of marine invertebrates with a minimum of 25 species or taxa were inventoried in a shell deposit, dominated by a community of Hiatella arctica with Mytilus edulis and barnacles composing the subcommunity. The majority of taxa identified in the shell deposit are boreal and sub-Arctic species; however, temperate species that exist today in the St. Lawrence maritime estuary have not been found. Based on marine invertebrate diversity and δ18O(CaCO3) of Mytilus edulis, the water in the shallow inlet of the Goldthwait Sea must have been cold and saline. The range of AMS 14C ages from 15 Mytilus edulis, constrained to 10,900 and 10,690 cal. yr BP, and exceptional state of preservation of adult and juvenile molluscan specimens suggest the abrupt mortality of entire invertebrate communities due to changing hydrodynamic conditions that included the combined effect of freshwater discharge from the receding Laurentide Ice Sheet and rapid isostatic uplift.


2018 ◽  
pp. 151-178
Author(s):  
Richard R. Strathmann

Modes of development of marine crustaceans and other marine invertebrates include presence or absence of a larval stage, of larval feeding, and of maternal protection of offspring. These different developmental modes impose different compromises (trade-offs) between the number of offspring and their size or the extent of maternal protection. Crustaceans differ from many marine animals in not shedding eggs prior to fertilization, which eliminates the complication of selection on size of eggs as a target for sperm. Features shared with marine invertebrates of several phyla include rare and ancient origins of feeding larvae, irreversible losses of a feeding larval stage, a constraint on brooding imposed by embryos’ need for oxygen, and possible benefits from slower development of protected embryos. Crustaceans differ, however, in having a diverse exoskeletal tool kit that has provided unusual capabilities. Nauplii and zoeae are diverse in form, behavior, and habitat, despite each being nominally one type of larva. Nauplii, as feeding larvae, have adapted to both the benthos and plankton. Settling stages (cyprids and decapodids) with enhanced speed have evolved twice. Some very large adults can supply their large broods with oxygen. Capacity for defense of offspring and home has led a few times to eusociality. The need to molt to grow and change form imposes episodic risk and growth and, in some cases, links evolution of egg size and size at metamorphosis. Crustaceans’ diverse life histories enable comparisons with broad implications for marine invertebrates: opportunity for dispersal is similar for larvae and adults of some crustaceans, demonstrating that marine larvae need not be adaptations for dispersal; development from very small eggs is enabled by less equipment needed for first larval feeding and also by postlarval stages being parasites; eggs shed into the water suffer greater mortality than planktonic larvae or brooded eggs, yet some planktonic crustaceans depend on benthic resting eggs for persistence of populations; larvae escape predation in diverse ways, and bigger larvae are not consistently safer; predation near the seafloor makes settlement a risky stage. Parallels with other taxa are numerous, but the crustacean exoskeletal tool kit has conferred unusual evolutionary opportunities and constraints. Even among marine crustaceans, however, evolutionary options for life histories differ among clades because of rare evolutionary origins of traits of larvae and mothers and biased evolutionary transitions in those traits.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 474 ◽  
Author(s):  
Vladimir L. Katanaev ◽  
Salvatore Di Falco ◽  
Yuri Khotimchenko

Despite huge efforts by academia and pharmaceutical industry, cancer remains the second cause of disease-related death in developed countries. Novel sources and principles of anticancer drug discovery are in urgent demand. Marine-derived natural products represent a largely untapped source of future drug candidates. This review focuses on the anticancer drug discovery potential of marine invertebrates from the North-West Pacific. The issues of biodiversity, chemodiversity, and the anticancer pharmacophore diversity this region hides are consecutively discussed. These three levels of diversity are analyzed from the point of view of the already discovered compounds, as well as from the assessment of the overall, still undiscovered and enormous potential. We further go into the predictions of the economic and societal benefits the full-scale exploration of this potential offers, and suggest strategic measures to be taken on the national level in order to unleash such full-scale exploration. The transversal and multi-discipline approach we attempt to build for the case of marine invertebrate-based anticancer drug discovery from a given region can be applied to other regions and disease conditions, as well as up-scaled to global dimensions.


2014 ◽  
Vol 77 (6) ◽  
pp. 1022-1030 ◽  
Author(s):  
JONG SOO MOK ◽  
JI YOUNG KWON ◽  
KWANG TAE SON ◽  
WOO SEOK CHOI ◽  
SUNG RIM KANG ◽  
...  

The concentrations of the heavy metals cadmium (Cd), mercury (Hg), lead (Pb), chromium, silver, nickel, copper, and zinc in the edible portions of 105 marine invertebrates representing 16 mollusk and crustacean species were accurately determined to evaluate their hazard for human consumption. The samples were collected in 2011 from major fish markets on the coast of Korea and analyzed for Hg using a direct Hg analyzer and for other metals using inductively coupled plasma mass spectrometry. Estimated dietary exposure (EDE) was determined, and a risk assessment was made of the heavy metals to provide information concerning consumer safety. The Cd concentrations, which were the highest for the three hazardous metals (Cd, Hg, and Pb), were significantly higher (P &lt; 0.05) in the bivalves and crabs than in the gastropods and cephalopods. However, the concentrations of these metals in all samples were within the regulatory limits set by Korea and other countries. The EDE was compared with the provisional tolerable daily intake (PTDI) adopted by the Joint FAO/WHO Expert Committee on Food Additives or the U.S. Environmental Protection Agency. The EDE of Cd, Hg, and Pb for each class of marine invertebrate were 0.07 to 2.64, 0.01 to 0.43, and 0.001 to 0.16% of the PTDI, respectively. The total EDE of Cd, Hg, and Pb for marine invertebrates accounted for 4.03, 0.96, and 0.21%, respectively, of the PTDI. The EDE of other metals in each class of marine invertebrate was less than 2% of the PTDI. The hazard index is a reasonable parameter for assessing the risk of heavy metal consumption associated with contaminated food. In the present study, the hazard index for all of the species was less than 1.0, which indicates that the intake of heavy metals from consumption of these marine invertebrates does not represent an appreciable hazard to humans.


Author(s):  
Gordana Juric-Sekhar ◽  
Robert F. Hevner

Malformations of cortical development encompass heterogeneous groups of structural brain anomalies associated with complex neurodevelopmental disorders and diverse genetic and nongenetic etiologies. Recent progress in understanding the genetic basis of brain malformations has been driven by extraordinary advances in DNA sequencing technologies. For example, somatic mosaic mutations that activate mammalian target of rapamycin signaling in cortical progenitor cells during development are now recognized as the cause of hemimegalencephaly and some types of focal cortical dysplasia. In addition, research on brain development has begun to reveal the cellular and molecular bases of cortical gyrification and axon pathway formation, providing better understanding of disorders involving these processes. New neuroimaging techniques with improved resolution have enhanced our ability to characterize subtle malformations, such as those associated with intellectual disability and autism. In this review, we broadly discuss cortical malformations and focus on several for which genetic etiologies have elucidated pathogenesis.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Glenys Gibson ◽  
Corban Hart ◽  
Robyn Pierce ◽  
Vett Lloyd

Histone modifications are widely recognized for their fundamental importance in regulating gene expression in embryonic development in a wide range of eukaryotes, but they have received relatively little attention in the development of marine invertebrates. We surveyed histone modifications throughout the development of a marine annelid, Polydora cornuta, to determine if modifications could be detected immunohistochemically and if there were characteristic changes in modifications throughout ontogeny (surveyed at representative stages from oocyte to adult). We found a common time of onset for three histone modifications in early cleavage (H3K14ac, H3K9me, and H3K4me2), some differences in the distribution of modifications among germ layers, differences in epifluorescence intensity in specific cell lineages suggesting that hyperacetylation (H3K14ac) and hypermethylation (H3K9me) occur during differentiation, and an overall decrease in the distribution of modifications from larvae to adults. Although preliminary, these results suggest that histone modifications are involved in activating early development and differentiation in a marine invertebrate.


Sign in / Sign up

Export Citation Format

Share Document