Growth of Oxide thin Films and Nanoparticles: Methods of Fabrication

Author(s):  
Falko P. Netzer ◽  
Claudine Noguera

This chapter outlines the fabrication methods of oxide thin films, from the oxidation of the outer layers of bulk elemental solids to thin film deposition methodologies. The classical theories treating the thermal oxidation of metals and silicon are reviewed. A particular focus is put on the oxidation of alloy single crystal surfaces to generate ultrathin oxide films and the formation of surface oxides, the latter as precursor layers for thicker bulk-type oxide phases. The diverse deposition techniques to grow epitaxial thin oxide films are introduced, with a classification into physical and chemical methods for the ease of presentation; the benefits and disadvantages of the different methods are pointed out. The synthesis of oxide nanoparticles is discussed in the gas phase and in liquid phase environments. The fundamental concepts of nucleation and growth of thin films and nanoparticles are introduced, including the classical capillary approach and atomistic descriptions.

2013 ◽  
Vol 667 ◽  
pp. 549-552
Author(s):  
A.S.M. Rodzi ◽  
Mohamad Hafiz Mamat ◽  
M.N. Berhan ◽  
Mohamad Rusop Mahmood

The properties of zinc oxide thin films were prepared by sol-gel spin-coating method have been presented. This study based on optical and electrical properties of ZnO thin film. The effects of annealing temperatures that exposed with two environments properties have been investigated. Environments exposed in room (27°C) and hot (80°C) temperatures which are stored by various days. Solution preparation, thin film deposition and characterization process were involved in this project. The ZnO films were characterized using UV-Vis-NIR spectrophotometer for optical properties. From that equipment, the percentage of transmittance (%) and absorption coefficient spectra were obtained. With two environments showed have different absorption coefficient are reveal and all films have low absorbance in visible and near infrared (IR) region but have high UV absorption properties. From SEM investigations the surface morphology of ZnO thin film shows the particles size become smaller and denser in hot temperatures while in room temperatures have porosity between particles.


2015 ◽  
Vol 773-774 ◽  
pp. 716-719
Author(s):  
Mokhter Faezahana ◽  
Nayan Nafarizal ◽  
Jia Wei Low ◽  
Che Ani Norhidayah ◽  
Mohd Zainizan Sahdan ◽  
...  

Atomic force microscope (AFM) is a useful tool to capture the two- and three-dimensional image of height and size of nanostructured thin film. It operate by measuring the forces between a sharp tip and surface of the measured sample. In addition, AFM is equipped with powerful software for image processing to interpret experimental results in detail. For example, by using the height and scanning length parameters of measured sample, average roughness and root mean square roughness can be evaluated. In the present works, the effect of image flattening process toward the surface roughness and surface fluctuations of metal oxide thin films will be presented. Set of samples were prepared by magnetron sputtering deposition and sol-gel coating techniques. In gas sensor industries using metal oxide thin film, surface roughness of metal oxide thin films are very important in order to improve the sensitivity and respond time of gas sensor. Therefore, optimization of thin film deposition and characterization are very important. The correlation between the three-dimensional image and thin film deposition and image processing parameters will also be presented.


Author(s):  
Paul G. Kotula ◽  
C. Barry Carter

Interfacial reactions between epitactic nickel oxide thin films and single-crystal aluminum oxide substrates were investigated as a function of substrate orientation. Two thin-film reaction geometries were employed for this purpose. The first, which was used to study the nucleation of the reaction product, consisted of epitactic nickel oxide thin films on alumina substrates. The second, which was used to determine the reaction kinetics, was similar to the first except that a thin epitactic buffer layer of the reaction product was placed between the nickel oxide film and substrate. In this case, the nucleation was avoided by essentially ‘nucleating’ the reaction product artificially. As thin films were utilized, and the scale of the salient microstructural features were correspondingly small, electron microscopy techniques were applied to determine the preferred nucleation sites and measure the rate at which the reaction proceeds for the respective geometries.Both types of thin-film reaction-couple geometry were produced by pulsed-laser deposition (PLD). PLD is a versatile thin-film deposition technique capable of producing high-quality oxide epilayers. The setup for PLD has been described elsewhere.


1994 ◽  
Vol 369 ◽  
Author(s):  
J. D. Klein ◽  
S. L. Clauson

AbstractA thin film deposition technique is described whereby the oxidation condition of as-deposited iridium oxide thin films can be manipulated by varying deposition conditions. Iridium oxide thin films were deposited by reactive rf magnetron sputtering in a H2/O2/Ar gas blend. Optical emission spectroscopy, an in-situ process monitor, was employed to observe redox interactions in the deposition plasma. The plasma spectra exhibited characteristics normally observed in hydrogen flame spectroscopy. A competitive redox balance was found to exist between atomic O and atomic H emissions. Plasma redox conditions defined by the H-O emissions could be accessed by a variety of gas flow conditions. Electrochemical aspects of the IrOx films were examined by cyclic voltammetry. Electrochromic capabilities were demonstrated through optical transmittance.


Author(s):  
M. Grant Norton ◽  
C. Barry Carter

Pulsed-laser ablation has been widely used to produce high-quality thin films of YBa2Cu3O7-δ on a range of substrate materials. The nonequilibrium nature of the process allows congruent deposition of oxides with complex stoichiometrics. In the high power density regime produced by the UV excimer lasers the ablated species includes a mixture of neutral atoms, molecules and ions. All these species play an important role in thin-film deposition. However, changes in the deposition parameters have been shown to affect the microstructure of thin YBa2Cu3O7-δ films. The formation of metastable configurations is possible because at the low substrate temperatures used, only shortrange rearrangement on the substrate surface can occur. The parameters associated directly with the laser ablation process, those determining the nature of the process, e g. thermal or nonthermal volatilization, have been classified as ‘primary parameters'. Other parameters may also affect the microstructure of the thin film. In this paper, the effects of these ‘secondary parameters' on the microstructure of YBa2Cu3O7-δ films will be discussed. Examples of 'secondary parameters' include the substrate temperature and the oxygen partial pressure during deposition.


2019 ◽  
Vol 7 (36) ◽  
pp. 20733-20741 ◽  
Author(s):  
Mehri Ghasemi ◽  
Miaoqiang Lyu ◽  
Md Roknuzzaman ◽  
Jung-Ho Yun ◽  
Mengmeng Hao ◽  
...  

The phenethylammonium cation significantly promotes the formation of fully-covered thin-films of hybrid bismuth organohalides with low surface roughness and excellent stability.


2013 ◽  
Vol 37 (3) ◽  
pp. 873-883 ◽  
Author(s):  
Tsai-Cheng Li ◽  
Rwei-Ching Chang ◽  
Yen-Choung Li

Silver conductive thin films deposited on glass and polyimide substrates by using ink jet printing are studied in this work. Characterization of the printed thin films and comparison with sputtered films are investigated. The micro texture, residual stress, adhesion, hardness, optical reflectance, and electric resistance of the thin films are discussed. The result shows that the ink jet printing has the possibility to replace sputtering in thin film deposition, especially for the polymer substrates.


Author(s):  
Cornel Tarabasanu Mihaila ◽  
Lavinia G. Hinescu ◽  
Cristian Boscornea ◽  
Carmen Moldovan ◽  
Mihai E. Hinescu

The paper presents the synthetic routes for obtaining some organic semiconductors and their characterization in order to use in thin film deposition for gas sensing devices. An original technique was used to control the molecular weight of polymeric phthalocyanine. We have fabricated devices consisting of evaporated thin films of copper, nickel, and iron phthalocyanines onto interdigital electrodes and estimated the electrical conductivity by in-situ measurements. The films were evaporated onto substrates (gold or aluminum) which were entirely integrated in the standard CMOS (capacitor metal oxide semiconductor) technology. The objectives of this work were to improve the synthesis methods of organic metal-complex tetraizoindoles and their polymers and to evaluate their electrical response and thermal stability as evaporated thin films. We have also investigated the variation of polymers conductivity and sublimation yield with the average molecular weight. We found that for polymeric phthalocyanines, the thermal stability was higher than for Pcs monomers. The stability of polymers increased with the average molecular weight.


Author(s):  
Joshua Dillard ◽  
Uzma Amir ◽  
Pawan Tyagi ◽  
Vincent Lamberti

Abstract Harnessing the exotic properties of molecular level nanostructures to produce novel sensors, metamaterials, and futuristic computer devices can be technologically transformative. In addition, connecting the molecular nanostructures to ferromagnetic electrodes bring the unprecedented opportunity of making spin property based molecular devices. We have demonstrated that magnetic tunnel junction based molecular spintronics device (MTJMSD) approach to address numerous technological hurdles that have been inhibiting this field for decades (P. Tyagi, J. Mater. Chem., Vol. 21, 4733). MTJMSD approach is based on producing a capacitor like a testbed where two metal electrodes are separated by an ultrathin insulator and subsequently bridging the molecule nanostructure across the insulator to transform a capacitor into a molecular device. Our prior work showed that MTJMSDs produced extremely intriguing phenomenon such as room temperature current suppression by six orders, spin photovoltaic effect, and evolution of new forms of magnetic metamaterials arising due to the interaction of the magnetic a molecule with two ferromagnetic thin films. However, making robust and reproducible electrical connections with exotic molecules with ferromagnetic electrodes is full of challenges and requires attention to MTJMSD structural stability. This paper focuses on MTJMSD stability by describing the overall fabrication protocol and the associated potential threat to reliability. MTJMSD is based on microfabrication methods such as (a) photolithography for patterning the ferromagnetic electrodes, (b) sputtering of metallic thin films and insulator, and (c) at the end electrochemical process for bridging the molecules between two ferromagnetic films separated by ∼ 2nm insulating gap. For the successful MTJMSD fabrication, the selection of ferromagnetic metal electrodes and thickness was found to be a deterministic factor in designing the photolithography, thin film deposition strategy, and molecular bridging process. We mainly used isotropic NiFe soft magnetic material and anisotropic Cobalt (Co) with significant magnetic hardness. We found Co was susceptible to chemical etching when directly exposed to photoresist developer and aged molecular solution. However, NiFe was very stable against the chemicals we used in the MTJMSD fabrication. As compared to NiFe, the Co films with > 10nm thickness were susceptible to mechanical stress-induced nanoscale deformities. However, cobalt was essential to produce (a) low leakage current before transforming the capacitor from the magnetic tunnel junction into molecular devices and (b) tailoring the magnetic properties of the ferromagnetic electrodes. This paper describes our overall MTJMSD fabrication scheme and process optimization to overcome various challenges to produce stable and reliable MTJMSDs. We also discuss the role of mechanical stresses arising during the sputtering of the ultrathin insulator and how to overcome that challenge by optimizing the insulator growth process. This paper will benefit researchers striving to make nanoscale spintronics devices for solving grand challenges in developing advanced sensors, magnetic metamaterials, and computer devices.


Sign in / Sign up

Export Citation Format

Share Document