Deep-sea mining

Author(s):  
Daniel O. B. Jones ◽  
Diva J. Amon ◽  
Abbie S. A. Chapman

Mining the extensive accumulations of minerals on the seafloor of the deep ocean might provide important resources, but it also has the potential to lead to widespread environmental impacts. Some of these impacts are unknown, and some may differ for the three main resource types: polymetallic nodules, seafloor massive sulphides, and polymetallic (cobalt-rich) crusts. Here, we detail the mining processes and describe the ecosystems associated with the minerals of interest. We then explain the expected impacts of mining, and discuss their potential effects on deep-ocean ecosystems. We also highlight the missing evidence needed to underpin effective environmental management and regulation of the nascent deep-sea mining industry.

2018 ◽  
Vol 20 (3) ◽  
pp. 454-468
Author(s):  
Wenbin Ma ◽  
Cees van Rhee ◽  
Dingena Schott

Since the gradual decrease of mineral resources on-land, deep sea mining (DSM) is becoming an urgent and important emerging activity in the world.


2019 ◽  
Author(s):  
Andrew Thaler ◽  
Diva Amon

When the RV Knorr set sail for the Galapagos Rift in 1977, the scientists aboard expected to find deep-sea hydrothermal vents. What they did not expect to find was life—abundant and unlike anything ever seen before. Submersible dives revealed not only deep-sea hydrothermal vents but entire ecosystem surrounding them, including the towering bright red tubeworms that would become icons of the deep sea. This discovery was so unexpected that the ship carried no biological preservatives. These first specimens were fixed in vodka from the scientists’ private reserves.Since that first discovery, deep-sea hydrothermal vents have been found throughout the oceans. As more regions are explored, newly discovered vent fields present the potential for entirely species and ecosystems. Increasingly, however, it is not scientific discovery, but the financial value of vent fields, and the ores they contain, that is driving exploration in the deep sea. Over the last five decades, a new industry has emerged to explore the potential of mining Seafloor Massive Sulphides (deep-sea hydrothermal vents that contain high concentrations of rare and precious metals). Multiple enterprises are developing mining prospects that include both active and inactive deep-sea hydrothermal vent fields. In order to understand the impacts of exploitation at deep-sea hydrothermal vents, scientists and miners must establish environmental baselines. Biodiversity is frequently used as a proxy for resilience and as a metric for assessing biological baselines but, since research effort is not distributed equally across the oceans, biodiversity estimates in the deep sea are rarely comprehensive. Studies have predominantly focused on a few key biogeographic provinces, while other regions have only been sampled sparingly. Managers, regulators, and mining companies are working from incomplete data, with inferences about the consequences, as well as mitigation and remediation practices, often drawn from studies of few vent ecosystems that are often different from those in which the impacts are expected to occur. To better assess our current understanding of deep-sea hydrothermal vent biodiversity, we undertook a quantitative survey of the last 40 years of vent research. A stark north/south divide was detected, demonstrating that while research was disproportionately focused in the Northern Hemisphere, mining prospects were overwhelmingly positioned in the Southern Hemisphere. In addition, we provided a ranked assessment of biodiversity in eight major biogeographic provinces, identified knowledge gaps in the available deep-sea hydrothermal vent exploration literature, and assessed sampling completeness to provide further guidance to regulators, managers, and contractors as they develop comprehensive environmental baseline assessments.


2021 ◽  
Author(s):  
Matthias Haeckel ◽  
Peter Linke

Cruise SO268 is fully integrated into the second phase of the European collaborative JPI-Oceans project MiningImpact and is designed to assess the environmental impacts of deep-sea mining of polymetallic nodules in the Clarion-Clipperton Fracture Zone (CCZ). In particular, the cruise aimed at conducting an independent scientific monitoring of the first industrial test of a pre-protoype nodule collector by the Belgian company DEME-GSR. The work includes collecting the required baseline data in the designated trial and reference sites in the Belgian and German contract areas, a quantification of the spatial and temporal spread of the produced sediment plume during the trials as well as a first assessment of the generated environmental impacts. However, during SO268 Leg 1 DEME-GSR informed us that the collector trials would not take place as scheduled due to unresolvable technical problems. Thus, we adjusted our work plan accordingly by implementing our backup plan. This involved conducting a small-scale sediment plume experiment with a small chain dredge to quantify the spatial and temporal dispersal of the suspended sediment particles, their concentration in the plume as well as the spatial footprint and thickness of the deposited sediment blanket on the seabed.


2021 ◽  
Vol 55 (6) ◽  
pp. 22-30
Author(s):  
Rahul Sharma

Abstract Deep-sea minerals such as polymetallic nodules have attracted significant interest among stakeholders not only for evaluating their potential as an alternative source of critical metals that are required for various industrial applications including green energy but also in developing technology for their exploitation. There has been a steady increase in the number of contractors having exploration rights over large tracts on the seafloor in the “Area,” and the International Seabed Authority that is mandated with the responsibility of regulating such activities is in the process of preparing a code for exploitation of these deep-sea minerals. This commentary takes a look at the resource potential and mining prospects of polymetallic nodules while addressing the economic and environmental issues associated with them.


2018 ◽  
Vol 1 (1) ◽  
pp. 597-604
Author(s):  
Wiktor Filipek ◽  
Krzysztof Broda

Abstract In recent years, we have observed a great interest in the exploitation of marine deposits by various methods of mining and transport to the surface. However, obtaining natural resources deposited at greater depths such as polymetallic nodules and seafloor massive sulphides – SMS creates a lot of challenges for both scientists and engineers. The solutions developed so far, unfortunately, have so far been characterized by high energy consumption. For several years the authors have been conducting theoretical and experimental research on new concepts of seabed to surface transport. The results of them have been presented in previous publications. This publication presents the results of the continuation of research on the concept of construction and operation of an autonomous transport module (submitted for printing). It focuses on a theoretical analysis of the change in gas phase density in the processes occurring during operation of the transport module intended for transport from the seabed. For this purpose, a reduced form of the van der Waals equation was used in the form of a third-degree equation for parameters interested from the point of view of the transport module.


2020 ◽  
Vol 81 (3) ◽  
pp. 75-77
Author(s):  
Atanas Hikov ◽  
Valeri Sachanski ◽  
Zlatka Milakovska ◽  
Elitsa Stefanova ◽  
Irena Peytcheva ◽  
...  

First data for polymetallic nodules and host sediments in Silurian sequence from the region of Asaritsa peak, West Balkan mountain are presented. The nodules are rich of Fe, Mn, Co and Ni. Both sediments and nodules have high content of REE. The described Silurian nodules and sediments show a number of similarities with modern deep-sea polymetallic nodule bearing sediments. Some differences such as probable depth of deposition, mechanism of nodule formation, degree of lithification are also established.


2006 ◽  
Vol 2 (5) ◽  
pp. 711-743 ◽  
Author(s):  
L. C. Skinner

Abstract. Given the magnitude and dynamism of the deep marine carbon reservoir, it is almost certain that past glacial – interglacial fluctuations in atmospheric CO2 have relied at least in part on changes in the carbon storage capacity of the deep sea. To date, physical ocean circulation mechanisms that have been proposed as viable explanations for glacial – interglacial CO2 change have focussed almost exclusively on dynamical or kinetic processes. Here, a simple mechanism is proposed for increasing the carbon storage capacity of the deep sea that operates via changes in the volume of southern-sourced deep-water filling the ocean basins, as dictated by the hypsometry of the ocean floor. It is proposed that a water-mass that occupies more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. Hence by filling this interval with southern-sourced deep-water (enriched in dissolved CO2 due to its particular mode of formation) the amount of carbon sequestered in the deep sea may be greatly increased. A simple box-model is used to test this hypothesis, and to investigate its implications. It is suggested that up to 70% of the observed glacial – interglacial CO2 change might be explained by the replacement of northern-sourced deep-water below 2.5 km water depth by its southern counterpart. Most importantly, it is found that an increase in the volume of southern-sourced deep-water allows glacial CO2 levels to be simulated easily with only modest changes in Southern Ocean biological export or overturning. If incorporated into the list of contributing factors to marine carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacial – interglacial CO2 change.


Sign in / Sign up

Export Citation Format

Share Document