Cores and Peripheries Revisited: The Mining Landscapes of Wadi Faynan (Southern Jordan) 5000 BC–AD 700

Author(s):  
Graeme Barker ◽  
David Mattingly

One of Barry Cunliffe’s major areas of research interest has been societies in transition, especially in the context of core/periphery relationships between expanding states and societies on their margins. Much of this work has been on the relationships between Rome and the Iron Age societies of southern Britain on the northwestern margins of the empire, and the subsequent pathways of resistance, interaction, and transformation. In this chapter we focus on events and processes on the opposite margins of the Roman empire in the Levant, where the Nabataean state was formally incorporated into the Roman imperial system some sixty years after the Claudian invasion of Britain. We draw on the results of the Wadi Faynan Landscape Survey (1996–2000), an interdisciplinary and diachronic investigation of evidence of environmental and climatic change, settlement pattern, and human activity in the Wadi Faynan in southern Jordan (figure 7.1). Situated about 40 kilometres from the Nabataean capital of Petra, the Wadi Faynan lies in the hot and hyper-arid Jordanian Desert, at a distinctive and spectacular mountain front that reaches 1500m above the desert floor. This landform marks the eastern margin of the desert lowlands of the great Jordanian rift valley, with the trough of the Wadi ‘Arabah to the south and west, and the highlands of the Mountains of Edom and the Jordanian tablelands to the east and north (Bienkowski and Galor 2006). The mean summer temperature on the Jordanian tablelands is in the order of 178c, compared with winter temperatures of about 12ºc (Bruins 2006; Rabb’a 1994). Winter temperatures on the desert floor in the Wadi Faynan are much the same as on the plateau, but in summer temperatures frequently reach 40ºc. Seasonality is strong, with most rain falling between December and March and virtually no precipitation occurring between June and September. Annual rainfall in the lower Wadi Faynan is around 63mm and even less in theWadi ‘Arabah (‘Aqaba receives 30mm for example), whereas the Jordanian Tablelands have an average precipitation exceeding 200mm per year.

1992 ◽  
Vol 163 (1) ◽  
pp. 139-151 ◽  
Author(s):  
R. M. BEVAN ◽  
P. J. BUTLER

Six tufted ducks were trained to dive for food at summer temperatures (air, 26°C, water, 23°C) and at winter temperatures (air, 5.8°C, water 7.4°C). The mean resting oxygen consumption (Voo2) a t winter temperatures (rwin) was 90% higher than that at summer temperatures (Tsum), but deep body temperatures (Tb) were not significantly different. Diving behaviour and mean oxygen consumption for dives of mean duration were similar at Twin and at Tsum, although the mean oxygen consumption for surface intervals of mean duration was 50% greater at Twin and Tb was significantly lower (1°C) at the end of a series of dives in winter than it was in summer. There appears to be an energy saving of 67 J per dive during winter conditions and this may, at least partially, be the result of the metabolic heat produced by the active muscles being used to maintain body temperature. While at rest under winter conditions, this would be achieved by shivering thermogenesis. Thus, the energetic costs of foraging in tufted ducks in winter are not as great as might be expected from the almost doubling of metabolic rate in resting birds.


1976 ◽  
Vol 6 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Richard D. Reger ◽  
Troy L. Péwé

Cryoplanation terraces are bedrock steps or terraces on ridge crests and hilltops. The tread or “flat” area is 10 to several hundred meters wide and long and slopes from 1 to 5° parallel to the ridge crests. Terrace scarps may be from 1 to 75 m high. Terraces are cut into all bedrock types and are best developed on closely jointed, fine-grained bedrock. The scarps and treads are covered with frost-rived rubble 1 to 2 m thick. The rubble on treads is perennially frozen at a depth of 1 to 2 m or less on sharp but inactive terraces in Alaska.Cryoplanation terraces exist in many parts of the world in present or past periglacial environments. They occur chiefly in nonglaciated regions and near the general altitude of snowline. Cryoplanation terraces form by scarp retreat as the result of nivation. Surficial debris is removed across the terrace tread by mass-wasting. Terrace morphology depends mainly upon climate, bedrock type, and terrace orientation.No climatic data are available from active terraces. Indirect evidence indicates that climatic requirements include low snowfall and cold summer temperatures. Shallow permafrost is necessary to provide moisture and a base for mass movement as well as a base for nivation.Hundreds of sharp but inactive terraces occur in some areas in Alaska where the summer temperature is colder than 10°C. When these terraces were active, temperatures were colder. Recent work in Alaska indicates that terraces were active in some areas when the mean July temperature was about 4°C. The mean annual air temperature probably was in the neighborhood of -12°C or colder.


2001 ◽  
Vol 79 (9) ◽  
pp. 1544-1551 ◽  
Author(s):  
Emilio Virgós ◽  
Teresa Romero ◽  
Julián G Mangas

We studied the pattern of distribution of the common genet (Genetta genetta) in areas in mountains and plains of central Spain, in the middle of the range of the species. We evaluated the role of temperature, rainfall, and habitat features in determining the ecological limits of genet distribution. Genets were very scarce on plateaux and the upper parts of the mountains, but were widely distributed in lower mountain areas. Genets were present in areas with abundant shrub cover, high mean of the mean minimum temperature and high mean of mean winter temperatures. Survey routes at the same altitude (<1000 m) in the mountains (genets abundant) and on the plateaux (genets very scarce) also differed in some of these variables, with low values on the plateaux for shrub cover, mean of the mean minimum temperatures, mean of the mean winter temperatures, and annual rainfall. Genets originated in Africa, therefore they are probably ill-adapted (morphologically and physiologically) for the cold conditions predominating in most of central Spain. Their preference for shrubby habitats may be linked to a greater availability of food and low risk of predation. Intermediate levels of rainfall may be correlated with higher temperatures, the key factor hypothesized to affect the distribution of this species. The distribution of the common genet fits a multimodal model, with peaks (presence) and valleys (absence) in the middle of its range, indicating that location in a particular part of the range is not a prior indicator of habitat suitability for the species.


BIBECHANA ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 95-104
Author(s):  
A. Thapa ◽  
A Silwal ◽  
S P Gautam ◽  
C K. Nepal ◽  
S. Bhattarai ◽  
...  

In this study, we reviewed the maximum and minimum temperature trends of the Kathmandu valley over the period of 2011-2017. In addition, the average monthly temperature trends were studied annually for the same period, with the data made available from the Department of Hydrology and Meteorology (DHM) of Nepal. The annual temperature trended in the same direction, with winter temperatures being lower and summer temperatures being higher. The annual average minimum and maximum air temperature trends were found to be slightly rising at 0.097˚C/year and 0.04˚C/year, respectively. The mean air temperature in Kathmandu valley is increasing at a rate of 0.06 degrees Celsius per year, with 2016 being the warmest year and 2012 being the least warm, with annual mean temperatures of 19.82˚C and 19.32˚C, respectively. The temperature difference is much smaller in the summer (less than ~12˚C) than in the winter.  BIBECHANA 18 (2) (2021) 95-104


2013 ◽  
Vol 12 (2) ◽  
pp. 119-125

The present study concerns the impact of a change in the rainfall regime on surface and groundwater resources in an experimental watershed. The research is conducted in a gauged mountainous watershed (15.18 km2) that is located on the eastern side of Penteli Mountain, in the prefecture of Attica, Greece and the study period concerns the years from 2003 to 2008. The decrease in the annual rainfall depth during the last two hydrological years 2006-2007, 2007-2008 is 10% and 35%, respectively, in relation to the average of the previous years. In addition, the monthly distribution of rainfall is characterized by a distinct decrease in winter rainfall volume. The field measurements show that this change in rainfall conditions has a direct impact on the surface runoff of the watershed, as well as on the groundwater reserves. The mean annual runoff in the last two hydrological years has decreased by 56% and 75% in relation to the average of the previous years. Moreover, the groundwater level follows a declining trend and has dropped significantly in the last two years.


2009 ◽  
Vol 9 (5) ◽  
pp. 1579-1595 ◽  
Author(s):  
C. Galy-Lacaux ◽  
D. Laouali ◽  
L. Descroix ◽  
N. Gobron ◽  
C. Liousse

Abstract. Long-term precipitation chemistry have been recorded in the rural area of Banizoumbou (Niger), representative of a semi-arid savanna ecosystem. A total of 305 rainfall samples ~90% of the total annual rainfall) were collected from June 1994 to September 2005. From ionic chromatography, pH major inorganic and organic ions were detected. Rainwater chemistry is controlled by soil/dust emissions associated with terrigeneous elements represented by SO42−, Ca2+, Carbonates, K+ and Mg2+. It is found that calcium and carbonates represent ~40% of the total ionic charge. The second highest contribution is nitrogenous, with annual Volume Weighed Mean (VWM) for NO3− and NH4+ concentrations of 11.6 and 18.1 μeq.l−1, respectively. This is the signature of ammonia sources from animals and NOx emissions from savannas soil-particles rain-induced. The mean annual NH3 and NO2 air concentration are of 6 ppbv and 2.6 ppbv, respectively. The annual VWM precipitation concentration of sodium and chloride are both of 8.7 μeq.l−1 which reflects the marine signature of monsoonal and humid air masses. The median pH value is of 6.05. Acidity is neutralized by mineral dust, mainly carbonates, and/or dissolved gases such NH3. High level of organic acidity with 8μeq.l−1 and 5.2 μeq.l−1 of formate and acetate were also found. The analysis of monthly Black Carbon emissions and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) values show that both biogenic emission from vegetation and biomass burning could explain the rainfall organic acidity content. The interannual variability of the VWM concentrations around the mean (1994–2005) is between ±5% and ±30% and mainly due to variations of sources strength and rainfall spatio-temporal distribution. From 1994 to 2005, the total mean wet deposition flux in the Sahelian region is of 60.1 mmol.m−2.yr−1 ±25%. Finally, Banizoumbou measurements are compared to other long-term measurements of precipitation chemistry in the wet savanna of Lamto (Côte d'Ivoire) and in the forested zone of Zoétélé (Cameroon). The total chemical loading presents a maximum in the dry savanna and a minimum in the forest (from 143.7, 100.2 to 86.6 μeq.l−1), associated with the gradient of terrigeneous sources. The wet deposition fluxes present an opposite trend, with 60.0 mmol.m−2.yr−1 in Banizoumbou, 108.6 mmol.m−2.yr−1 in Lamto and 162.9 mmol.m−2.yr−1 in Zoétélé, controlled by rainfall gradient along the ecosystems transect.


2021 ◽  
Author(s):  
Paola Mazzoglio ◽  
Ilaria Butera ◽  
Pierluigi Claps

&lt;p&gt;The intensity and the spatial distribution of precipitation depths are known to be highly dependent on relief and geomorphological parameters. Complex environments like mountainous regions are prone to intense and frequent precipitation events, especially if located near the coastline. Although the link between the mean annual rainfall and geomorphological parameters has received substantial attention, few literature studies investigate the relationship between the sub-daily maximum annual rainfall depth and geographical or morphological landscape features.&lt;br&gt;In this study, the mean of the rainfall extremes in Italy, recently revised in the so-called I&lt;sup&gt;2&lt;/sup&gt;-RED dataset, are investigated in their spatial variability in comparison with some landscape and also some broad climatic characteristics. The database includes all sub-daily rainfall extremes recorded in Italy from 1916 until 2019 and this analysis considers their mean values (from 1 to 24 hours) in stations with at least 10 years of records, involving more than 3700 stations.&lt;br&gt;The geo-morpho-climatic factors considered range from latitude, longitude and minimum distance from the coastline on the geographic side, to elevation, slope, openness and obstruction morphological indices, and also include an often-neglected robust climatological information, as the local mean annual rainfall.&lt;br&gt;Obtained results highlight that the relationship between the annual maximum rainfall depths and the hydro-geomorphological parameters is not univocal over the entire Italian territory and over different time intervals. Considering the whole of Italy, the highest correlation is reached between the mean values of the 24-hours records and the mean annual precipitation (correlation coefficient greater than 0.75). This predominance remains also in sub-areas of the Italian territory (i.e., the Alpine region, the Apennines or the coastal areas) but correlation decreases as the time interval decreases, except for the Alpine region (0.73 for the 1-hour maximum). The other geomorphological parameters seem to act in conjunction, making it difficult to evaluate, with a simple linear regression analysis, their impact. As an example, the absolute value of the correlation coefficient between the elevation and the 1-hour extremes is greater than 0.35 for the Italian and the Alpine regions, while for the 24-hours interval it is greater than 0.35 over the coastal areas.&lt;br&gt;To further investigate the spatial variability of the relationship between rainfall and elevation, a spatial linear regression analysis has been undertaken. Local linear relationships have been fitted in circles centered on any of the 0.5-km size pixels in Italy, with 1 to 30 km radius and at least 5 stations included. Results indicate the need of more comprehensive terrain analysis to better understand the causes of local increasing or decreasing relations, poorly described in the available literature.&lt;/p&gt;


2021 ◽  
pp. 1-50
Author(s):  
Ruidan Chen ◽  
Zhiping Wen ◽  
Riyu Lu ◽  
Wenjun Liu

AbstractThis study reveals the interdecadal changes in the interannual variability of the summer temperature over Northeast Asia (NEA), which presents an enhancement around the early 1990s and a reduction after the mid-2000s. The stronger NEA temperature variability after the early 1990s is favored by the enhanced influence of the Pacific–Japan (PJ) teleconnection, which is remotely modulated by the southeastern tropical Indian Ocean (SETIO). After the early 1990s, the mean state over the SETIO presents relatively warmer SST and ascending motion, favoring a good relationship between the local SST and convection. Therefore, the SETIO SST could prominently influence the local convection and subsequently modulate the convection over the western North Pacific (WNP) via a cross-equatorial overturning circulation. The abnormal convection over the WNP further triggers the PJ teleconnection to influence NEA. However, these ocean–atmosphere processes disappear before the early 1990s. In this period, the mean state over the SETIO features relatively colder SST and subsiding motion, accompanied by a poor relationship between the local SST and convection. Therefore, the variability of convection over the SETIO is weak, thus the atmospheric variability over the WNP is also weakened and the PJ teleconnection presents a different distribution that could not influence NEA. The reduced variability of NEA temperature after the mid-2000s is related to the feeble influence of the PJ teleconnection and the reduced variability of the SETIO SST, which is modulated by the SST over the tropical central–eastern Pacific during the preceding winter to spring.


Author(s):  
Álvaro J. Back ◽  
Augusto C. Pola ◽  
Nilzo I. Ladwig ◽  
Hugo Schwalm

ABSTRACT Understanding the risks of extreme events related to soil erosion is important for adequate dimensioning of erosion and runoff control structures. The objective of this study was to determine the rainfall erosivity with different return periods for the Valley of the Rio do Peixe in Santa Catarina state, Brazil. Daily pluviographic data series from 1984 to 2014 from the Campos Novos, and Videira meteorological stations and from 1986 to 2014 from the Caçador station were used. The data series of maximum annual rainfall intensity in 30 min, maximum annual erosive rainfall, and total annual erosivity were analyzed for each station. The Gumbel-Chow distributions were adjusted and their adhesions were evaluated by the Kolmogorov-Smirnov test at a significance level of 5%. The Gumbel-Chow distribution was adequate for the estimation of all studied variables. The mean annual erosivity corresponds to the return period of 2.25 years. The data series of the annual maximum individual rainfall erosivity coefficients varied from 47 to 50%.


AmS-Skrifter ◽  
2021 ◽  
pp. 1-300
Author(s):  
Trond Løken

The ambition of this monograph is to analyse a limited number of topics regarding house types and thus social and economic change from the extensive material that came out of the archaeological excavation that took place at Forsandmoen (“Forsand plain”), Forsand municipality, Rogaland, Norway during the decade 1980–1990, as well as the years 1992, 1995 and 2007. The excavation was organised as an interdisciplinaryresearch project within archaeology, botany (palynological analysis from bogs and soils, macrofossil analysis) and phosphate analysis, conducted by staff from the Museum of Archaeology in Stavanger (as it was called until 2009, now part of the University of Stavanger). A large phosphate survey project had demarcaded a 20 ha settlement area, among which 9 ha were excavated using mechanical topsoil stripping to expose thehabitation traces at the top of the glaciofluvial outwash plain of Forsandmoen. A total of 248 houses could be identified by archaeological excavations, distributed among 17 house types. In addition, 26 partly excavated houses could not be classified into a type. The extensive house material comprises three types of longhouses, of which there are as many as 30–40 in number, as well as four other longhouse types, of which there are only 2–7 in number. There were nine other house types, comprising partly small dwelling houses and partly storage houses, of which there were 3–10 in number. Lastly, there are 63 of the smallest storage house, consisting of only four postholes in a square shape. A collection of 264 radiocarbon dates demonstrated that the settlement was established in the last part of the 15th century BC and faded out during the 7th–8th century AD, encompassing the Nordic Bronze Age and Early Iron Age. As a number of houses comprising four of the house types were excavated with the same methods in the same area by the same staff, it is a major goal of this monograph to analyse thoroughly the different featuresof the houses (postholes, wall remains, entrances, ditches, hearths, house-structure, find-distribution) and how they were combined and changed into the different house types through time. House material from different Norwegian areas as well as Sweden, Denmark, Germany and the Netherlands is included in comparative analyses to reveal connections within the Nordic area. Special attention has been given to theinterpretation of the location of activity areas in the dwelling and byre sections in the houses, as well as the life expectancy of the two main longhouse types. Based on these analyses, I have presented a synthesis in 13 phases of the development of the settlement from Bronze Age Period II to the Merovingian Period. This analysis shows that, from a restricted settlement consisting of one or two small farms in the Early BronzeAge, it increases slightly throughout the Late Bronze Age to 2–3 solitary farms to a significantly larger settlement consisting of 3–4 larger farms in the Pre-Roman Iron Age. From the beginning of the early Roman Iron Age, the settlement seems to increase to 8–9 even larger farms, and through the late Roman Iron Age, the settlement increases to 12–13 such farms, of which 6–7 farms are located so close together that they would seem to be a nucleated or village settlement. In the beginning of the Migration Period, there were 16–17 farms, each consisting of a dwelling/byre longhouse and a workshop, agglomerated in an area of 300 x 200 m where the farms are arranged in four E–W oriented rows. In addition, two farms were situated 140 m NE of the main settlement. At the transition to the Merovingian Period, radiocarbon dates show that all but two of the farms were suddenly abandoned. At the end of that period, the Forsandmoen settlement was completely abandoned. The abandonment could have been caused by a combination of circumstances such as overexploitation in agriculture, colder climate, the Plague of Justinian or the collapse of the redistributive chiefdom system due to the breakdown of the Roman Empire. The abrupt abandonment also coincides with a huge volcanic eruption or cosmic event that clouded the sun around the whole globe in AD 536–537. It is argued that the climatic effect on the agriculture at this latitude could induce such a serious famine that the settlement, in combination with the other possible causes, was virtually laid waste during the ensuing cold decade AD 537–546. 


Sign in / Sign up

Export Citation Format

Share Document