scholarly journals Long term precipitation chemistry and wet deposition in a remote dry savanna site in Africa (Niger)

2009 ◽  
Vol 9 (5) ◽  
pp. 1579-1595 ◽  
Author(s):  
C. Galy-Lacaux ◽  
D. Laouali ◽  
L. Descroix ◽  
N. Gobron ◽  
C. Liousse

Abstract. Long-term precipitation chemistry have been recorded in the rural area of Banizoumbou (Niger), representative of a semi-arid savanna ecosystem. A total of 305 rainfall samples ~90% of the total annual rainfall) were collected from June 1994 to September 2005. From ionic chromatography, pH major inorganic and organic ions were detected. Rainwater chemistry is controlled by soil/dust emissions associated with terrigeneous elements represented by SO42−, Ca2+, Carbonates, K+ and Mg2+. It is found that calcium and carbonates represent ~40% of the total ionic charge. The second highest contribution is nitrogenous, with annual Volume Weighed Mean (VWM) for NO3− and NH4+ concentrations of 11.6 and 18.1 μeq.l−1, respectively. This is the signature of ammonia sources from animals and NOx emissions from savannas soil-particles rain-induced. The mean annual NH3 and NO2 air concentration are of 6 ppbv and 2.6 ppbv, respectively. The annual VWM precipitation concentration of sodium and chloride are both of 8.7 μeq.l−1 which reflects the marine signature of monsoonal and humid air masses. The median pH value is of 6.05. Acidity is neutralized by mineral dust, mainly carbonates, and/or dissolved gases such NH3. High level of organic acidity with 8μeq.l−1 and 5.2 μeq.l−1 of formate and acetate were also found. The analysis of monthly Black Carbon emissions and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) values show that both biogenic emission from vegetation and biomass burning could explain the rainfall organic acidity content. The interannual variability of the VWM concentrations around the mean (1994–2005) is between ±5% and ±30% and mainly due to variations of sources strength and rainfall spatio-temporal distribution. From 1994 to 2005, the total mean wet deposition flux in the Sahelian region is of 60.1 mmol.m−2.yr−1 ±25%. Finally, Banizoumbou measurements are compared to other long-term measurements of precipitation chemistry in the wet savanna of Lamto (Côte d'Ivoire) and in the forested zone of Zoétélé (Cameroon). The total chemical loading presents a maximum in the dry savanna and a minimum in the forest (from 143.7, 100.2 to 86.6 μeq.l−1), associated with the gradient of terrigeneous sources. The wet deposition fluxes present an opposite trend, with 60.0 mmol.m−2.yr−1 in Banizoumbou, 108.6 mmol.m−2.yr−1 in Lamto and 162.9 mmol.m−2.yr−1 in Zoétélé, controlled by rainfall gradient along the ecosystems transect.

2008 ◽  
Vol 8 (2) ◽  
pp. 5761-5812 ◽  
Author(s):  
C. Galy-Lacaux ◽  
D. Laouali ◽  
L. Descroix ◽  
N. Gobron ◽  
C. Liousse

Abstract. A long-term measurement of precipitation chemistry has been carried-out in a rural area of Banizoumbou, in the Sahel (Niger), representative of the african semi-arid savanna ecosystem. A total of 305 rainfall samples, representing 90% of the total annual rainfall, were collected with an automatic wet-only rain sampler from June 1994 to September 2005. Using ionic chromatography, pH major inorganic and organic ions were analyzed. Rainwater chemistry at the site is controlled by soil dust emissions associated to a strong terrigeneous contribution represented by SO42–, Ca2+, Carbonates, K+ and Mg2+. Calcium and carbonates represent about 40% of the total ionic charge of precipitation. The second highest contribution is nitrogenous, with annual Volume Weighed Mean (VWM) NO3– and NH4+, concentrations of 11.6 and 18.1 μeq.l−1, respectively. This is thesignature of ammonia sources related to animals and NOx emissions from savannas soils rain-induced, at the beginning of the rainy season. The mean annual NH3 and NO2 air concentration are of 6 ppbv and 2.6 ppbv, respectively. The annual VWM precipitation concentration of sodium and chloride are both of 8.7 μeq.l−1 and reflects the marine signature from the monsoon humid air masses coming from the ocean. The mean pH value, calculated from the VWM of H+, is 5.64. Acidity is neutralized by mineral dust, mainly carbonates, and/or dissolved gases such NH3. High level of organic acidity with 8 μeq.l−1 and 5.2 μeq.l−1 of formate and acetate were found, respectively. The analysis of monthly Black Carbon emissions and FAPAR values show that both biogenic emission from vegetation and biomass burning sources could explain the organic acidity content of the precipitation. The interannual variability of the VWM concentrations around the mean (1994–2005) presents fluctuations between ±5% and ±30% mainly attributed to the variations of sources strength associated with rainfall spatio-temporal distribution. From 1994 to 2005, the total mean wet deposition flux in the Sahelian region is 60.1 mmol.m−2.yr−1 and fluctuates around ±25%. Finally, Banizoumbou measurements, are compared to other long-term measurements of precipitation chemistry in the wet savanna of Lamto (Côte d'Ivoire) and in the forested zone of Zoétélé (Cameroon). The total chemical loadings presents a strong negative gradient from the dry savanna to the forest (143.7, 100.2 to 86.6 μeq.l–1), associated with the gradient of terrigeneous compounds sources. The wet deposition fluxes present an opposite gradient, with 60.0 mmol.m−2.yr−1 in Banizoumbou, 108.6 mmol.m−2.yr–1 in Lamto and 162.9 mmol.m−2.yr−1 in Zoétélé, controlled by the rainfall gradient along the ecosystems transect.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1301
Author(s):  
Yi Tang ◽  
Qingru Wu ◽  
Wei Gao ◽  
Shuxiao Wang ◽  
Zhijian Li ◽  
...  

Mercury (Hg) is a ubiquitous environmental toxicant that has caused global concern due to its persistence and bioaccumulation in the environment. Wet deposition is a crucial Hg input for both terrestrial and aquatic environments and is a significant indicator for evaluating the effectiveness of anthropogenic Hg control. Rainwater samples were collected from May 2014 to October 2018 in Chongming Island to understand the multi-year Hg wet deposition characteristics. The annual Hg wet deposition flux ranged from 2.6 to 9.8 μg m−2 yr−1 (mean: 4.9 μg m−2 yr−1). Hg wet deposition flux in Chongming was comparable to the observations at temperate and subtropical background sites (2.0–10.2 μg m−2 yr−1) in the northern hemisphere. Hg wet deposition flux decreased from 8.6 μg m−2 yr−1 in 2014–2015 to 3.8 μg m−2 yr−1 in 2016 and was attributed to a decrease in the volume-weighted mean (VWM) Hg concentration (−4.1 ng L−1 yr−1). The reduced VWM Hg was explained by the decreasing atmospheric Hg and anthropogenic emissions reductions. The annual Hg wet deposition flux further decreased from 3.8 μg m−2 in 2016 to 2.6 μg m−2 in 2018. The reduction of warm season (April–September) rainfall amounts (356–845 mm) mainly contributed to the Hg wet deposition flux reduction during 2016–2018. The multi-year monitoring results suggest that long-term measurements are necessary when using wet deposition as an indicator to reflect the impact of anthropogenic efforts on mercury pollution control and meteorological condition variations.


2018 ◽  
Vol 147 ◽  
pp. 08007
Author(s):  
Nia Yuniarti Hasan ◽  
Driejana ◽  
Aminudin Sulaeman ◽  
Herto Dwi Ariesyady

Acidic deposition (acid rain) has been known to cause negative impact to environment. Measurement of rain chemical composition was done in March to August 2016 to investigate temporal variation of atmospheric deposition in Bandung City. Rainwater samples are collected at four sampling sites. The chemical properties of the rain determined were pH and ionic concentrations of SO42-, NO3-, Cl-, Ca2+, Mg2+, Na+, K+ and NH4+. The rainwater was typically acidic with the range of mean pH between 5.29 – 5.56 and mean electric conductivity value range between 16.37 – 19.96 μS/cm. Temporal variation showed higher SO42+, NO3+ and NH4+ concentration in August when rainfalls were the lowest (214.88 mm). Similar temporal variation for the mean pH (5.98) and electric conductivity (25.36 μS/cm) in August. Ca2+ highest concentration was observed in June. Generally, the the major component of precipitation chemistry were SO42- and NO3-, Ca+ and NH4+, for anion and cations, respectively. The largest proportions of the total anions in all sampling sites was SO42- ranged from 32% (Lembang) to 37% (Buah Batu) followed by NO3- (13 – 15%) and and Cl- (4 – 7%). For cations, NH4+ dominated with proportion ranged between 21 – 27% and subsequently Ca2+ (13 – 19%) and followed by Na+, Mg+, K+ and H+. The Neutralizing Factor (NF) results reveal that Ca2+ and NH4+ are the dominant neutralization substances in the rainwater. However it should be noted that reduced nitrogen (NH4+) act as mobile nitrogen that further will acidify the environment, particularly to soil ecosystem downstreams.


2021 ◽  
Author(s):  
Wenting Wang ◽  
Shuiqing Yin ◽  
Bofu Yu ◽  
Shaodong Wang

Abstract. Stochastic weather generator CLIGEN can simulate long-term weather sequences as input to WEPP for erosion predictions. Its use, however, has been somewhat restricted by limited observations at high spatial-temporal resolutions. Long-term daily temperature, daily and hourly precipitation data from 2405 stations and daily solar radiation from 130 stations distributed across mainland China were collected to develop the most critical set of site-specific parameter values for CLIGEN. Universal Kriging (UK) with auxiliary covariables, longitude, latitude, elevation, and the mean annual rainfall was used to interpolate parameter values into a 10 km × 10 km grid and parameter accuracy was evaluated based on leave-one-out cross-validation. The results demonstrated that Nash-Sutcliffe efficiency coefficients (NSEs) between UK interpolated and observed parameters were greater than 0.85 for all parameters apart from the standard deviation of solar radiation, skewness coefficient of daily precipitation, and cumulative distribution of relative time to peak intensity, with relatively lower interpolation accuracy (NSE > 0.66). In addition, CLIGEN simulated daily weather sequences using UK-interpolated and observed inputs showed consistent statistics and frequency distributions. The mean absolute discrepancy between the two sequences in the average and standard deviation of the temperature was less than 0.51 °C. The mean absolute relative discrepancy for the same statistics for solar radiation, precipitation amount, duration and maximum intensity in 30-min were less than 5 %. CLIGEN parameters at the 10 km resolution would meet the minimum WEPP climate requirements throughout in mainland China. The dataset is availability at http://clicia.bnu.edu.cn/data/cligen.html and http://doi.org/10.12275/bnu.clicia.CLIGEN.CN.gridinput.001 (Wang et al., 2020).


2013 ◽  
Vol 14 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Yi-Ru Chen ◽  
Bofu Yu ◽  
Graham Jenkins

Abstract It is generally assumed that rainfall intensity will increase with temperature increase, irrespective of the underlying changes to the average rainfall. This study documents and investigates long-term trends in rainfall intensities, annual rainfall, and mean maximum and minimum temperatures using the Mann–Kendall trend test for nine sites in eastern Australia. Relationships between rainfall intensities at various durations and 1) annual rainfall and 2) the mean maximum and minimum temperatures were investigated. The results showed that the mean minimum temperature has increased significantly at eight out of the nine sites in eastern Australia. Changes in annual rainfall are likely to be associated with changes in rainfall intensity at the long duration of 48 h. Overall, changes in rainfall intensity at short durations (<1 h) positively correlate with changes in the mean maximum temperature, but there is no significant correlation with the mean minimum temperature and annual rainfall. Additionally, changes in rainfall intensity at longer durations (≥1 h) positively correlate with changes in the mean annual rainfall, but not with either mean maximum or minimum temperatures for the nine sites investigated.


MAUSAM ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 489-498
Author(s):  
VIJAY KUMAR SONI ◽  
P. S. KANNAN ◽  
S. G. GHANEKAR ◽  
USHA RAVINDRAN ◽  
A. N. GAIKWAD ◽  
...  

Lkkj & bl ’kks/k Ik= esa vjc lkxj ds feuhdkW;  rFkk caxky dh [kkM+h ds iksVZCys;j }hi ds nks LFkkuksa ds o"kZ 1981 ls 2002 rd ds 22 o"kkZsa ds jklk;fud feJ.k ds dsoy vknzZ&o"kZ.k vk¡dM+kas dk fo’ys"k.k fd;k x;k gSA fofo/k vk;fud ldsUnzh;dj.k ds chp ds lglaca/kksa dks Li"V djus dk iz;kl fd;k x;k gSA ’kjn_rq ds nkSjku gqbZ o"kkZ ds ty esa lYQsV] ukbVªsV vkSj gkbMªkstu vk;uksa dh vf/kdre lkUnzrk ikbZ xbZ gS A _rq okj oxhZdj.k ds nkSjku ekWulwu _rq esa lHkh vk;uksa ds vknZz o"kZ.k vfHkokg ds vf/kdre gksus dk irk pyk gS A nksuksa gh LFkkuksa ij vEyh; fu{ksi.k esa c<+ksrjh dh izo`fr ns[kh xbZ gS A futZu}hi ij Tokykeq[kh dh fØ;k’khyrk iksVZCys;j ds o"kkZty esa jklk;fud feJ.k dks izHkkfor djrh gS A lYQsV vk;u ¼½ dk okf"kZd vknzZ o"kZ.k feuhdkW; esa 15-6 fd-xzk- izfr gsDVs;j izfr o"kZ rFkk iksVZCys;j es 25-5 fd-xzk- izfr gsDVsvj izfr o"kZ ik;k x;k gS rFkk ukbVªsV vk;u ¼½ dh fu{ksfir ek=k feuhdkW; esa 38-0 fd-xzk- izfr gsDVs;j izfr o"kZ vkSj iksVZCys;j esa 74-6 fd-xzk- izfr gsDVs;j izfr o"kZ rd ikbZ xbZ gS A /kuk;u vk;uksa esa lksfM;e vk;u ¼Na+½ rFkk dSfY’k;e vk;u ¼Ca2+½ ds rRo vf/kd ek=k esa tek gksrs gSa ftuesa eSXusf’k;e vk;u ¼Mg2+½ds lkFk&lkFk iksVkf’k;e vk;u ¼K+½ Hkh feys gksrs gSa A   The data on chemical composition of wet only precipitation from two island stations Minicoy in Arabian Sea and Portblair in Bay of Bengal, representing 22 year period, 1981-2002 have been analyzed. An attempt has been made to explain the correlation between various ionic concentrations. The maximum concentrations of sulfate, nitrate and hydrogen ions in rainwater are observed during winter season. When classified by season the wet deposition flux for all the ions is greatest in the monsoon season during which precipitation is substantially high. A tendency for increase in acidic deposition is observed at both the stations. The volcanic activity at Barren island appears to influence the chemical composition of rainwater at Portblair. The annual wet deposition of SO42- ranged from 15.6 kg ha-1 yr-1 at Minicoy to 25.5 kg ha-1 yr-1 at Portblair, and the corresponding amounts of NO3- deposited ranged from 38.0 kg ha-1 yr-1 at Minicoy to 74.6 kg ha-1 yr-1 at Portblair. Of the cations Na+ and Ca2+ are the elements deposited in largest quantities followed by Mg2+ and K+.


MAUSAM ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 77-86
Author(s):  
S. K. SUBRAMANIAN ◽  
S. V. PALANDE ◽  
B.N. DEWAN ◽  
S. K. DIKSHIT ◽  
LAWRENCE JOSEPH

The monthly and annual rainfall data for 35 meteorological sub-divisions for the 87-year period (1901-1987) have been used to study the trends and periodicities of monsoon and annual rainfall series. A number of distribution-free statistical tests have been applied to the rainfall series for testing non-randomness. Comparison of the decadewise means with the mean of the whole period showed that, for the country as a whole, the annual rainfall indicated four different climatic periods -two periods of above normal rainfall from 1960-1965 and from 1975 onwards and two periods of below normal rainfall from 1901-1915 and 1965-1975 whereas the monsoon rainfall showed two different climatic periods-a period of below normal rainfall from 1901-1920 and a period of above normal rainfall from 1920 onwards. The series were also subjected to low-passfilters which showed the presence of significant long term trend for a few sub-divisions. The power spectrum analysis for the annual and monthly rainfall series for a large number of sub-divisions showed significant periodicities of 2. 1-3.6 years, which correspond to the frequency range of the QBO. In addition, periodicities of 5.1 to 10.0 years and 19.3 years or more were also significant for a number of sub-divisions.  


2021 ◽  
Vol 13 (6) ◽  
pp. 2945-2962
Author(s):  
Wenting Wang ◽  
Shuiqing Yin ◽  
Bofu Yu ◽  
Shaodong Wang

Abstract. The stochastic weather generator CLIGEN can simulate long-term weather sequences as input to WEPP for erosion predictions. Its use, however, has been somewhat restricted by limited observations at high spatial–temporal resolutions. Long-term daily temperature, daily, and hourly precipitation data from 2405 stations and daily solar radiation from 130 stations distributed across mainland China were collected to develop the most critical set of site-specific parameter values for CLIGEN. Ordinary kriging (OK) and universal kriging (UK) with auxiliary covariables, i.e., longitude, latitude, elevation, and the mean annual rainfall, were used to interpolate parameter values into a 10 km×10 km grid, and the interpolation accuracy was evaluated based on the leave-one-out cross-validation. Results showed that UK generally outperformed OK. The root mean square error between UK-interpolated and observed temperature-related parameters was ≤0.88 ∘C (1.58 ∘F). The Nash–Sutcliffe efficiency coefficient for precipitation- and solar-radiation-related parameters was ≥0.87, except for the skewness coefficient of daily precipitation, which was 0.78. In addition, CLIGEN-simulated daily weather sequences using UK-interpolated and observed parameters showed consistent statistics and frequency distributions. The mean absolute discrepancy between the two sequences for temperature was <0.51 ∘C, and the mean absolute relative discrepancy for solar radiation, precipitation amount, duration, and maximum 30 min intensity was <5 % in terms of the mean and standard deviation. These CLIGEN parameter values at 10 km resolution would meet the minimum data requirements for WEPP application throughout mainland China. The dataset is available at http://clicia.bnu.edu.cn/data/cligen.html (last access: 20 May 2021) and https://doi.org/10.12275/bnu.clicia.CLIGEN.CN.gridinput.001 (Wang et al., 2020).


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


1987 ◽  
Vol 57 (01) ◽  
pp. 55-58 ◽  
Author(s):  
J F Martin ◽  
T D Daniel ◽  
E A Trowbridge

SummaryPatients undergoing surgery for coronary artery bypass graft or heart valve replacement had their platelet count and mean volume measured pre-operatively, immediately post-operatively and serially for up to 48 days after the surgical procedure. The mean pre-operative platelet count of 1.95 ± 0.11 × 1011/1 (n = 26) fell significantly to 1.35 ± 0.09 × 1011/1 immediately post-operatively (p <0.001) (n = 22), without a significant alteration in the mean platelet volume. The average platelet count rose to a maximum of 5.07 ± 0.66 × 1011/1 between days 14 and 17 after surgery while the average mean platelet volume fell from preparative and post-operative values of 7.25 ± 0.14 and 7.20 ± 0.14 fl respectively to a minimum of 6.16 ± 0.16 fl by day 20. Seven patients were followed for 32 days or longer after the operation. By this time they had achieved steady state thrombopoiesis and their average platelet count was 2.44 ± 0.33 × 1011/1, significantly higher than the pre-operative value (p <0.05), while their average mean platelet volume was 6.63 ± 0.21 fl, significantly lower than before surgery (p <0.001). The pre-operative values for the platelet volume and counts of these patients were significantly different from a control group of 32 young males, while the chronic post-operative values were not. These long term changes in platelet volume and count may reflect changes in the thrombopoietic control system secondary to the corrective surgery.


Sign in / Sign up

Export Citation Format

Share Document