Impact of Climate Change Mitigation On Ocean Acidification Projections

Author(s):  
Fortunat Joos ◽  
Thomas L. Frölicher

Ocean acidification caused by the uptake of carbon dioxide (CO2) by the ocean is an important global change problem (Kleypas et al. 1999; Caldeira and Wickett 2003; Doney et al. 2009). Ongoing ocean acidification is closely linked to global warming, as acidification and warming are primarily caused by continued anthropogenic emissions of CO2 from fossil fuel burning (Marland et al. 2008 ), land use, and land-use change (Strassmann et al. 2007). Future ocean acidification will be determined by past and future emissions of CO2 and their redistribution within the earth system and the ocean. Calculation of the potential range of ocean acidification requires consideration of both a plausible range of emissions scenarios and uncertainties in earth system responses, preferably by using results from multiple scenarios and models. The goal of this chapter is to map out the spatiotemporal evolution of ocean acidification for different metrics and for a wide range of multigas climate change emissions scenarios from the integrated assessment models (Nakićenović 2000; Van Vuuren et al. 2008b). By including emissions reduction scenarios that are among the most stringent in the current literature, this chapter explores the potential benefits of climate mitigation actions in terms of how much ocean acidification can be avoided and how much is likely to remain as a result of inertia within the energy and climate systems. The longterm impacts of carbon emissions are addressed using so-called zero-emissions commitment scenarios and pathways leading to stabilization of atmospheric CO 2. Discussion will primarily rely on results from the cost-efficient Bern2.5CC model (Plattner et al. 2008) and the comprehensive carbon cycle– climate model of the National Centre for Atmospheric Research (NCAR), CSM1.4-carbon (Steinacher et al. 2009; Frölicher and Joos 2010). The magnitude of the human perturbation of the climate system is well documented by observations (Solomon e t al. 2007). Carbon emissions from human activities force the atmospheric composition, climate, and the geochemical state of the ocean towards conditions that are unique for at least the last million years (see Chapter 2).

2020 ◽  
Author(s):  
Katherine Turner ◽  
Richard G. Williams ◽  
Anna Katavouta ◽  
David J. Beerling

<p>Unlike historical carbon emissions, which have been driven by economics and politics, climate engineering methods must be scientifically assessed, with consideration as to the type, rate, and total amount implemented. Temperatures reductions from carbon dioxide removal have been found to be proportional to the cumulative amount of carbon removed.  Climate engineering “co-benefits”, such as reduced ocean acidification, may also occur and should be considered when optimising an engineered climate solution. In this study we examine the sensitivities of climate engineering to its implementation, focussing on the effects of its time of onset and rate of carbon capture or enhanced weathering, as well as  background emissions and ocean physics.</p><p>We use two simple coupled models– a Gnanadesikan-style coupled atmosphere-ocean model and the intermediate-complexity Earth system model GENIE – with idealised setups for negative emissions through either carbon capture and sequestration, enhanced weathering, or a combination. The inclusion of enhanced weathering provides insight as to how changes in ocean carbonate chemistry may impact climate, both in terms of temperature and pH changes. We have created ensembles in which the timing, rate, background emissions scenario, and model physics of the model vary and use these ensembles to understand how these decisions may impact the efficacy of climate engineering.</p><p>We find that the effectiveness of climate engineering is dependent upon the background carbon emissions and the choice of climate engineering. Carbon capture reduces surface average temperature more per PgC captured than enhanced weathering, and both are more effective under low emissions scenarios. Additionally, background emissions determine how the impact of climate engineering is realised: under high emissions, earlier implementation of climate engineering results in faster temperature mitigation, although the end state is independent of the onset. When considering reductions in ocean acidification, we find that the alkalinity flux in our enhanced weathering experiments leads to a higher pH than for carbon capture, as well as the pH signals being less dependent on the timing. Thus, the timing and pathway of the climate engineering is important in terms of the resulting averted warming and acidification, though the final equilibrium is still effectively determined by the cumulative carbon budget.</p>


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1240
Author(s):  
Ming-Yun Chu ◽  
Wan-Yu Liu

As compared with conventional approaches for reducing carbon emissions, the strategies of reducing emissions from deforestations and forest degradation (REDD) can greatly reduce costs. Hence, the United Nations Framework Convention on Climate Change regards the REDD strategies as a crucial approach to mitigate climate change. To respond to climate change, Taiwan passed the Greenhouse Gas Reduction and Management Act to control the emissions of greenhouse gases. In 2021, the Taiwan government has announced that it will achieve the carbon neutrality target by 2050. Accordingly, starting with focusing on the carbon sink, the REDD strategies have been considered a recognized and feasible strategy in Taiwan. This study analyzed the net present value and carbon storage for various land-use types to estimate the carbon stock and opportunity cost of land-use changes. When the change of agricultural land to artificial forests generated carbon stock, the opportunity cost of carbon stock was negative. Contrarily, restoring artificial forests (which refer to a kind of forest that is formed through artificial planting, cultivation, and conservation) to agricultural land would generate carbon emissions, but create additional income. Since the opportunity cost of carbon storage needs to be lower than the carbon market price so that landlords have incentives to conduct REDD+, the outcomes of this study can provide a reference for the government to set an appropriate subsidy or price for carbon sinks. It is suggested that the government should offer sufficient incentives to reforest collapsed land, and implement interventions, promote carbon trading policies, or regulate the development of agricultural land so as to maintain artificial broadleaf forests for increased carbon storage.


2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Prue Taylor

Governance of the Earth’s global ecological commons creates unprecedented challenges for humanity. Our traditional Westphalian state system was not designed to respond to these global challenges and thus far it has failed to transform. Climate change is the current headline issue; 30 years on and we still swing between hope and despair about our collective ability to radically reduce greenhouse gas emissions. Related issues are beginning to vie for our response: ocean acidification, mass species extinction, land use change and freshwater scarcity. 


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Kevin Lo

This paper identifies three types of model environmental cities in China and examines their levels of energy-related carbon emissions using a bottom-up accounting system. Model environmental cities are identified as those that have been recently awarded official recognition from the central government for their efforts in environmental protection. The findings show that, on average, the Low-Carbon Cities have lower annual carbon emissions, carbon intensities, and per capita emissions than the Eco-Garden Cities and the Environmental Protection Cities. Compared internationally, the Eco-Garden Cities and the Environmental Protection Cities have per capita emissions that are similar to those of American cities whereas per capita emissions from the Low-Carbon Cities are similar to those of European cities. The result indicates that addressing climate change is not a priority for some model environmental cities. Policy changes are needed to prioritize climate mitigation in these cities, considering that climate change is a cross-cutting environmental issue with wide-ranging impact.


2013 ◽  
Vol 26 (18) ◽  
pp. 6844-6858 ◽  
Author(s):  
Nathan P. Gillett ◽  
Vivek K. Arora ◽  
Damon Matthews ◽  
Myles R. Allen

Abstract The ratio of warming to cumulative emissions of carbon dioxide has been shown to be approximately independent of time and emissions scenarios and directly relates emissions to temperature. It is therefore a potentially important tool for climate mitigation policy. The transient climate response to cumulative carbon emissions (TCRE), defined as the ratio of global-mean warming to cumulative emissions at CO2 doubling in a 1% yr−1 CO2 increase experiment, ranges from 0.8 to 2.4 K EgC−1 in 15 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5)—a somewhat broader range than that found in a previous generation of carbon–climate models. Using newly available simulations and a new observational temperature dataset to 2010, TCRE is estimated from observations by dividing an observationally constrained estimate of CO2-attributable warming by an estimate of cumulative carbon emissions to date, yielding an observationally constrained 5%–95% range of 0.7–2.0 K EgC−1.


Author(s):  
H. Damon Matthews ◽  
Susan Solomon ◽  
Raymond Pierrehumbert

The primary objective of the United Nations Framework Convention on Climate Change is to stabilize greenhouse gas concentrations at a level that will avoid dangerous climate impacts. However, greenhouse gas concentration stabilization is an awkward framework within which to assess dangerous climate change on account of the significant lag between a given concentration level and the eventual equilibrium temperature change. By contrast, recent research has shown that global temperature change can be well described by a given cumulative carbon emissions budget. Here, we propose that cumulative carbon emissions represent an alternative framework that is applicable both as a tool for climate mitigation as well as for the assessment of potential climate impacts. We show first that both atmospheric CO 2 concentration at a given year and the associated temperature change are generally associated with a unique cumulative carbon emissions budget that is largely independent of the emissions scenario. The rate of global temperature change can therefore be related to first order to the rate of increase of cumulative carbon emissions. However, transient warming over the next century will also be strongly affected by emissions of shorter lived forcing agents such as aerosols and methane. Non-CO 2 emissions therefore contribute to uncertainty in the cumulative carbon budget associated with near-term temperature targets, and may suggest the need for a mitigation approach that considers separately short- and long-lived gas emissions. By contrast, long-term temperature change remains primarily associated with total cumulative carbon emissions owing to the much longer atmospheric residence time of CO 2 relative to other major climate forcing agents.


2020 ◽  
Vol 13 (10) ◽  
pp. 4713-4747
Author(s):  
Tokuta Yokohata ◽  
Tsuguki Kinoshita ◽  
Gen Sakurai ◽  
Yadu Pokhrel ◽  
Akihiko Ito ◽  
...  

Abstract. Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. On the one hand, future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human-induced land-use change can affect the climate system through biogeophysical and biogeochemical effects. To investigate these interrelationships, we developed MIROC-INTEG-LAND (MIROC INTEGrated LAND surface model version 1), an integrated model that combines the land surface component of global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land-use models. The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balance, human water management, and crop growth incorporates a land use decision-making model based on economic activities. In MIROC-INTEG-LAND, spatially detailed information regarding water resources and crop yields is reflected in the prediction of future land-use change, which cannot be considered in the conventional integrated assessment models. In this paper, we introduce the details and interconnections of the submodels of MIROC-INTEG-LAND, compare historical simulations with observations, and identify various interactions between the submodels. By evaluating the historical simulation, we have confirmed that the model reproduces the observed states well. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand. The newly developed MIROC-INTEG-LAND could be combined with atmospheric and ocean models to develop an integrated earth system model to simulate the interactions among coupled natural–human earth system components.


2011 ◽  
Vol 8 (5) ◽  
pp. 9709-9746 ◽  
Author(s):  
S. Kloster ◽  
N. M. Mahowald ◽  
J. T. Randerson ◽  
P. J. Lawrence

Abstract. Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire behavior will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075–2099) fire carbon emissions by 17 and 62% compared to present day (1985–2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projection. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by −5%. Changes in human ignition led to an increase in 20%. When we also included changes in fire management efforts to suppress fires in densely populated areas, global fire carbon emission decreased by −6% in response to changes in population density. We concluded from this study that changes in fire emissions in the future are controlled by multiple interacting factors. Although changes in climate led to an increase in future fire emissions this could be globally counterbalanced by coupled changes in land use, harvest, and demography.


EDIS ◽  
2018 ◽  
Vol 2018 (4) ◽  
Author(s):  
Joshua T. Patterson ◽  
Lisa S. Krimsky

Ocean acidification (OA) generally refers to the ongoing decrease in ocean pH. Ocean acidification is caused primarily by the oceanic uptake of excess carbon dioxide (CO2) from the atmosphere. Other impacts related to climate change (increased sea level rise, coastal flooding and extreme weather events) often receive more attention than OA, but the acidification of the Earth’s oceans is well documented and is a major concern for the marine science community. This publication is the first in a series that addresses ocean acidification in Florida. It specifically explains the changes that are occurring to the chemistry of our coastal and oceanic waters because of elevated carbon dioxide levels. Additional publications address potential environmental, economic, and social implications for Florida.  


Sign in / Sign up

Export Citation Format

Share Document