Structure of Nucleoli in Higher Plants by Scanning Electron Microscopy

2019 ◽  
Vol 20 (2) ◽  
pp. 522-534
Author(s):  
T. Balinyan ◽  
L. Derecha ◽  
Yu. Nosatenko

The article considers the need for a comprehensive study of biological damage to fibrous materials by scanning electron microscopy. The main types and characteristics of fibers and fibrous materials, their types of damage, in particular, biological, and the mechanism of their formation are described. It is shown that with modern methods for studying morphological characteristics, the most effective is the method of scanning electron microscopy, which makes it possible to directly study the object in a wide range of magnifications. The use of scanning electron microscopy makes it possible to identify qualitatively new volumetric microsigns when conducting studies of fibrous materials. Biological damage agents (biofactors) are considered — microbiological (bacteria, microbes, fungi, blue-green algae), phytological (mosses, lichens, higher plants, algae), zoological (insects, birds, mammals). Attention is focused on the study of injuries caused by mold caused by moths, dogs, etc. Conducting a comprehensive study of various types of damage to materials of various fibrous nature allows us to obtain an information database, the possibility of differentiating chemical, mechanical, thermal and biological damage, identifying microsigns that individualize one or another object (factor) of action, influence, increasing the potential for obtaining trace information about the actual data and circumstances of the event in those cases when only by external morphological features of the diagnosis It is not possible to repair damage. The data obtained indicate the effectiveness of the chosen research area. The results of the studies are positive for creating the optimal research scheme, methods of microscopic studies of damage to materials of fibrous nature in order to solve diagnostic, identification and situational tasks of forensic examination.


2011 ◽  
Vol 25 (4) ◽  
pp. 580-585
Author(s):  
James E. Altland ◽  
Glenn Wehtje ◽  
Jeff Sibley ◽  
Michael E. Miller ◽  
Charles H. Gilliam ◽  
...  

Quinoclamine is used in Europe, and was under evaluation in the Unites States for the control of liverwort in nursery crops. Liverwort is a nonvascular, chlorophyll-containing plant that can be problematic in greenhouse and nursery crops. POST-applied quinoclamine controls liverwort. However, liverwort structures vary in their sensitivity to POST-applied quinoclamine. Specifically, archegonial receptacles (female) are much more tolerant of quinoclamine than either antheridial receptacles (male) or thalli (leaflike structures). A series of studies were conducted to, first, document the degree of differential sensitivity between tissues to quinoclamine, and second, to determine the basis of this differential sensitivity. The dose that results in 50% of the population being controlled (I50) of antheridial receptacles and juvenile thalli were estimated to be 1.60 and 1.27 kg·ha−1, respectively. TheI50of archegonial receptacles could not be estimated, but exceeded 10.45 kg·ha−1. Chlorophyll content varied between liverwort tissues, but the content did not correlate to quinoclamine sensitivity. Absorption of14C after application of radiolabeled quinoclamine was less in archegonial receptacles than in either antheridial receptacles or thalli. Scanning electron microscopy of the surface of the liverwort tissues revealed that archegonial receptacles had smaller pores (equivalent to stomata in higher plants) than either antheridial receptacles or thalli. The tolerance of archegonial receptacles to quinoclamine can be partially, but not exclusively, attributed to reduced absorption. This reduced absorption may be attributed to the limited pore size and less total pore area of the archegonial receptacles.


Author(s):  
P.S. Porter ◽  
T. Aoyagi ◽  
R. Matta

Using standard techniques of scanning electron microscopy (SEM), over 1000 human hair defects have been studied. In several of the defects, the pathogenesis of the abnormality has been clarified using these techniques. It is the purpose of this paper to present several distinct morphologic abnormalities of hair and to discuss their pathogenesis as elucidated through techniques of scanning electron microscopy.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Ronald H. Bradley ◽  
R. S. Berk ◽  
L. D. Hazlett

The nude mouse is a hairless mutant (homozygous for the mutation nude, nu/nu), which is born lacking a thymus and possesses a severe defect in cellular immunity. Spontaneous unilateral cataractous lesions were noted (during ocular examination using a stereomicroscope at 40X) in 14 of a series of 60 animals (20%). This transmission and scanning microscopic study characterizes the morphology of this cataract and contrasts these data with normal nude mouse lens.All animals were sacrificed by an ether overdose. Eyes were enucleated and immersed in a mixed fixative (1% osmium tetroxide and 6% glutaraldehyde in Sorenson's phosphate buffer pH 7.4 at 0-4°C) for 3 hours, dehydrated in graded ethanols and embedded in Epon-Araldite for transmission microscopy. Specimens for scanning electron microscopy were fixed similarly, dehydrated in graded ethanols, then to graded changes of Freon 113 and ethanol to 100% Freon 113 and critically point dried in a Bomar critical point dryer using Freon 13 as the transition fluid.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
J.N. Ramsey ◽  
D.P. Cameron ◽  
F.W. Schneider

As computer components become smaller the analytical methods used to examine them and the material handling techniques must become more sensitive, and more sophisticated. We have used microbulldozing and microchiseling in conjunction with scanning electron microscopy, replica electron microscopy, and microprobe analysis for studying actual and potential problems with developmental and pilot line devices. Foreign matter, corrosion, etc, in specific locations are mechanically loosened from their substrates and removed by “extraction replication,” and examined in the appropriate instrument. The mechanical loosening is done in a controlled manner by using a microhardness tester—we use the attachment designed for our Reichert metallograph. The working tool is a pyramid shaped diamond (a Knoop indenter) which can be pushed into the specimen with a controlled pressure and in a specific location.


Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


Author(s):  
C. W. Kischer

The morphology of the fibroblasts changes markedly as the healing period from burn wounds progresses, through development of the hypertrophic scar, to resolution of the scar by a self-limiting process of maturation or therapeutic resolution. In addition, hypertrophic scars contain an increased cell proliferation largely made up of fibroblasts. This tremendous population of fibroblasts seems congruous with the abundance of collagen and ground substance. The fine structure of these cells should reflect some aspects of the metabolic activity necessary for production of the scar, and might presage the stage of maturation.A comparison of the fine structure of the fibroblasts from normal skin, different scar types, and granulation tissue has been made by transmission (TEM) and scanning electron microscopy (SEM).


Sign in / Sign up

Export Citation Format

Share Document