A transcription inhibitor in non-histone proteins of germinated pea cotyledon

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Gaoyue Jiang ◽  
Chunxia Li ◽  
Meng Lu ◽  
Kefeng Lu ◽  
Huihui Li

AbstractLysine crotonylation has been discovered in histone and non-histone proteins and found to be involved in diverse diseases and biological processes, such as neuropsychiatric disease, carcinogenesis, spermatogenesis, tissue injury, and inflammation. The unique carbon–carbon π-bond structure indicates that lysine crotonylation may use distinct regulatory mechanisms from the widely studied other types of lysine acylation. In this review, we discussed the regulation of lysine crotonylation by enzymatic and non-enzymatic mechanisms, the recognition of substrate proteins, the physiological functions of lysine crotonylation and its cross-talk with other types of modification. The tools and methods for prediction and detection of lysine crotonylation were also described.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 761-776 ◽  
Author(s):  
Lori A Rinckel ◽  
David J Garfinkel

Abstract In Saccharomyces cerevisiae, the target site specificity of the retrotransposon Ty1 appears to involve the Ty integration complex recognizing chromatin structures. To determine whether changes in chromatin structure affect Ty1 and Ty2 target site preference, we analyzed Ty transposition at the CAN1 locus in mutants containing altered levels of histone proteins. A Δhta1-htb1 mutant with decreased levels of H2A and H2B histone proteins showed a pattern of Ty1 and Ty2 insertions at CAN1 that was significantly different from that of both the wild-type and a Δhta2-htb2 mutant, which does not have altered histone protein levels. Altered levels of H2A and H2B proteins disrupted a dramatic orientation bias in the CAN1 promoter region. In the wild-type strains, few Ty1 and Ty2 insertions in the promoter region were oriented opposite to the direction of CAN1 transcription. In the Δhta1-htb1 background, however, numerous Ty1 and Ty2 insertions were in the opposite orientation clustered within the TATA region. This altered insertion pattern does not appear to be due to a bias caused by selecting canavanine resistant isolates in the different HTA1-HTB1 backgrounds. Our results suggest that reduced levels of histone proteins alter Ty target site preference and disrupt an asymmetric Ty insertion pattern.


2015 ◽  
Vol 158 (5) ◽  
pp. 403-411 ◽  
Author(s):  
Toru Kawakami ◽  
Ryo Yoshikawa ◽  
Yuki Fujiyoshi ◽  
Yuichi Mishima ◽  
Hironobu Hojo ◽  
...  

2015 ◽  
Vol 450 ◽  
pp. 25-30 ◽  
Author(s):  
Abdul Rouf Mir ◽  
Moinuddin

2007 ◽  
Vol 27 (11) ◽  
pp. 4037-4048 ◽  
Author(s):  
Helder Ferreira ◽  
Joanna Somers ◽  
Ryan Webster ◽  
Andrew Flaus ◽  
Tom Owen-Hughes

ABSTRACT Nucleosomes fulfill the apparently conflicting roles of compacting DNA within eukaryotic genomes while permitting access to regulatory factors. Central to this is their ability to stably associate with DNA while retaining the ability to undergo rearrangements that increase access to the underlying DNA. Here, we have studied different aspects of nucleosome dynamics including nucleosome sliding, histone dimer exchange, and DNA wrapping within nucleosomes. We find that alterations to histone proteins, especially the histone tails and vicinity of the histone H3 αN helix, can affect these processes differently, suggesting that they are mechanistically distinct. This raises the possibility that modifications to histone proteins may provide a means of fine-tuning specific aspects of the dynamic properties of nucleosomes to the context in which they are located.


1985 ◽  
Vol 227 (1) ◽  
pp. 271-276 ◽  
Author(s):  
K Kimura ◽  
N Katoh ◽  
K Sakurada ◽  
S Kubo

Phospholipid-sensitive Ca2+-dependent protein kinase was partially purified from total particulate fraction of pig testis. The enzyme phosphorylated high mobility group 1 protein (HMG 1), one of the major chromatin-associated non-histone proteins. Other HMG proteins (HMG 2, 14 and 17) were not phosphorylated by the enzyme. Exhaustive phosphorylation of HMG 1 revealed that 1 mol of phosphate was incorporated/mol of HMG 1. The apparent Km value for HMG 1 was 3.66 microM. 1,3-Diolein stimulated the phosphorylation at 10 microM-Ca2+ in the presence of phosphatidylserine. The phosphorylation of HMG 1 was inhibited by adriamycin, an inhibitor of spermatogenesis.


1994 ◽  
Vol 14 (8) ◽  
pp. 5223-5228
Author(s):  
C Dollard ◽  
S L Ricupero-Hovasse ◽  
G Natsoulis ◽  
J D Boeke ◽  
F Winston

The Saccharomyces cerevisiae genome contains four loci that encode histone proteins. Two of these loci, HTA1-HTB1 and HTA2-HTB2, each encode histones H2A and H2B. The other two loci, HHT1-HHF1 and HHT2-HHF2, each encode histones H3 and H4. Because of their redundancy, deletion of any one histone locus does not cause lethality. Previous experiments demonstrated that mutations at one histone locus, HTA1-HTB1, do cause lethality when in conjunction with mutations in the SPT10 gene. SPT10 has been shown to be required for normal levels of transcription of several genes in S. cerevisiae. Motivated by this double-mutant lethality, we have now investigated the interactions of mutations in SPT10 and in a functionally related gene, SPT21, with mutations at each of the four histone loci. These experiments have demonstrated that both SPT10 and SPT21 are required for transcription at two particular histone loci, HTA2-HTB2 and HHF2-HHT2, but not at the other two histone loci. These results suggest that under some conditions, S. cerevisiae may control the level of histone proteins by differential expression of its histone genes.


2007 ◽  
Vol 18 (8) ◽  
pp. 933-939 ◽  
Author(s):  
Rocio A. Lopez ◽  
Amanda B. Goodman ◽  
Melissa Rhodes ◽  
Jessica A.L. Blomberg ◽  
Jonathan Heller

Sign in / Sign up

Export Citation Format

Share Document