scholarly journals Formation of the young compact cluster GM 24 triggered by a cloud–cloud collision

Author(s):  
Yasuo Fukui ◽  
Mikito Kohno ◽  
Keiko Yokoyama ◽  
Atsushi Nishimura ◽  
Kazufumi Torii ◽  
...  
Keyword(s):  
2009 ◽  
Vol 5 (S266) ◽  
pp. 539-539
Author(s):  
Gladys Solivella ◽  
Edgard Giorg ◽  
Rubén Vázquez ◽  
Giovanni Carraro

AbstractNGC 4852 is a moderately compact cluster centered at α2000 = 13 : 00 : 09; δ = −59 : 36 : 48, located near the center of an Hα superring. This cluster forms part of an extended region including young stellar aggregates inside a circle with a radius of 3 degrees, where many show an abundance of emission line stars. In the field of this cluster, two stars of known type exist: Wray 15–1039 (emission-line object) and CD −58:4845 (emission-line star). We do not yet know whether the Be phase is transient or whether it is just what randomly happens in some hot stars. It appears that Be star may be found even in clusters as old as 70 Myr with a high occurrence rate in clusters of 25–27 Myr old. A recent photometric survey in NGC 4852 down to V = 22 – 23 mag established that NGC 4852 is about 200 – 250 Myr old, located at 1.1 kpc from the Sun and with a mean E(B − V) = 0.45 mag. Since the presence of potential Be-type stars in the cluster area suggests it may be a very young object instead of moderately old, we decided to carry out spectroscopy for 33 selected stars and CCD UBVI photometry for the bright objects in the cluster area. This way, we attempt to clarify their evolutionary state and include them in the framework of emission-line stars and open clusters. From our analysis, we agree with the cluster distance and reddening determined by earlier studies, but we derive that the age of NGC 4852 is younger than 40 Myr.


1978 ◽  
Vol 56 (19) ◽  
pp. 2380-2404 ◽  
Author(s):  
D. J. S. Barr ◽  
V. E. Hadland-Hartmann

The zoospore ultrastructure of 12 species of Rhizophydium is described. Species include the following: R. chlorogonii (Serbinow) Jaczewski; R. constantineani Saccardo; R. haynaldii (Schaarschmidt) Fischer; R. capillaceum Barr; two morphologically and cytologically different species, each previously identified as R. sphaerotheca Zopf; R. patellarium Scholz; R. biporosum (Couch) Barr; R. subangulosum (Braun) Rabenhorst; R. laterale (Braun) Rabenhorst; R. sphaerocarpum (Zopf) Fischer var. spirogyrae Barr; and two isolates of R. pollinis-pini (Braun) Zopf. The Rhizophydium zoospore is basically similar to the Chytridium zoospore having (1) the nucleus, a compact cluster of ribosomes, one or more mitochondria, and a microbody – lipid globule complex compartmentalized into the core of the zoospore by a double membrane system and (2) two to five microtubules connecting one side of the kinetosome to the rumposome on the lipid globule surface and thus anchoring the lipid globule in a lateral–posterior position in the zoospore. Rhizophydium patellarium does not have kinetosome-associated microtubules or a rumposome but does have the membrane-bound core area. In all species, a microbody and mitochondrion are associated with the lipid globule. The number of mitochondria varies from 1 in some species to several or to over 30 in other species. In one isolate of R. pollinis-pini, there is 1 large mitochondrion and in the other there were 30–35 small mitochondria. The peripheral cytoplasm of all species contains clusters of vesicles or endoplasmic reticulum which bud from the double membrane system, vesicles of moderate electron density, and vacuoles of various sizes; R. capillaceum, R. patellarium, and R. subangulosum have in addition vesicles which contain very electron-dense material. Rhizophydium capillaceum and R. sphaerocarpum zoospores have virus-like particles and the R. biporosum zoospore contains a paracrystalline body. The taxonomic significance of the observations and the relationship of Rhizophydium to other chytrids are stressed in the Discussion.


Author(s):  
Sergey N. Makarov ◽  
Jyrki Ahveninen ◽  
Matti Hämäläinen ◽  
Yoshio Okada ◽  
Gregory M. Noetscher ◽  
...  

AbstractIn this study, the boundary element fast multipole method or BEM-FMM is applied to model compact clusters of tightly spaced pyramidal neocortical neurons firing simultaneously and coupled with a high-resolution macroscopic head model. The algorithm is capable of processing a very large number of surface-based unknowns along with a virtually unlimited number of elementary microscopic current dipole sources distributed within the neuronal arbor.The realistic cluster size may be as large as 10,000 individual neurons, while the overall computation times do not exceed several minutes on a standard server. Using this approach, we attempt to establish how well the conventional lumped-dipole model used in electroencephalography/magnetoencephalography (EEG/MEG) analysis approximates a compact cluster of realistic neurons situated either in a gyrus (EEG response dominance) or in a sulcus (MEG response dominance).


2018 ◽  
Vol 194 ◽  
pp. 01002
Author(s):  
Alexandra Antonnikova ◽  
Sergey Basalaev ◽  
Anna Usanina ◽  
Eugene Maslov

This paper presents investigations on the new experimental setup for obtaining a compact cluster of monodisperse bubbles of a given diameter is presented. Also we provided the results of experimental study of the bubble cluster floating-up in the presence of a surfactant in a wide range of Reynolds numbers. There was held a comparison of the dynamics of the floating-up of a monodisperse bubble cluster in a glycerol medium and in the medium glycerin supplemented with a surfactant.


1997 ◽  
Vol 77 (3-4) ◽  
pp. 169-174 ◽  
Author(s):  
N. Ceratto ◽  
C. Dobkin ◽  
M. Carter ◽  
E. Jenkins ◽  
X.-L. Yao ◽  
...  
Keyword(s):  
Type I ◽  

1988 ◽  
Vol 333 ◽  
pp. 586 ◽  
Author(s):  
David C. Koo ◽  
Richard G. Kron ◽  
D. Nanni ◽  
A. Vignato ◽  
D. Treverse
Keyword(s):  

1964 ◽  
Vol 20 (3) ◽  
pp. 401-410 ◽  
Author(s):  
F. P. Bretherton

A compact cluster of 3 to 6 rigid equal spheres is falling under gravity in a viscous liquid. The small effects of intertia on a horizontal regular polygonal configuration are that the polygon expands as it falls and small perturbations from this configuration die out, although when the polygon is large enough it becomes weakly unstable. This is an extension of the analysis of Hocking (1964, which was applied to the experiments of Jayaweera, Mason & Slack (1964).


2004 ◽  
Vol 231-232 ◽  
pp. 945-948 ◽  
Author(s):  
T. Mizota ◽  
H. Nonaka ◽  
T. Fujimoto ◽  
A. Kurokawa ◽  
S. Ichimura

1996 ◽  
Vol 174 ◽  
pp. 293-302
Author(s):  
H. M. Lee

We have examined the dynamical evolution of stellar system containing massive remnant stellar component. If individual mass of remnant stars is much heavier than that of normal stars which comprise most of the mass in the cluster, remnant stars quickly form a subsystem within the core of cluster of ordinary stars. The subsystem evolves on its own relaxation time scale which is very short. However, the post collapse expansion driven by the three-body binary heating becomes very slow because the expansion energy of the compact subcluster can be easily absorbed by surrounding cluster. The gravitational radiation can lead to the merger of binaries when binaries become very hard. A central seed black hole might form if repeated merger becomes very efficient. Otherwise, relatively stable two-component phase of central compact cluster of remnant stars surrounded by larger cluster of low mass stars would last for a long time.


Sign in / Sign up

Export Citation Format

Share Document