Super-critical column accretion on to strongly magnetized neutron stars in ULX pulsars

Author(s):  
Tomohisa Kawashima ◽  
Ken Ohsuga

Abstract We carry out axisymmetric two-dimensional radiation hydrodynamical simulations of super-critical accretion columns on to strongly magnetized neutron stars. The effect of the strong magnetic field is taken into account by inhibiting the fluid motion across the radial magnetic field of the neutron stars. It is found that the high-density matter falls on to the neutron star along the sidewall of the column. Within the column, two high-density inflow regions shaped like a hollow cone are found for the case of extremely high mass accretion rates, ${\dot{M}}/(L_{\rm Edd}/c{\,}^2) \sim 5\times 10^{2}$, where $\dot{M}$, $L_{\rm Edd}$, and $c$ are the mass accretion rate on to the neutron star, the Eddington luminosity, and the speed of light, respectively. The less dense matter in the gap between the high density inflow regions is blown away via the radiative force. The resultant structure of the inflow looks like a triple hollow cone. Matter falls on to the neutron star only through the sidewall for the case of moderately high mass accretion rates, ${\dot{M}}/(L_{\rm Edd}/c{\,}^2)\, {\sim 3 \times 10^1}$. A low-density outflow fills the interior of the column. In this case, the inflow structure looks like a single hollow cone. Although the copious photons are generated in the inflow regions via a shock, the photons escape from the sidewall of the column and the radiation force does not prevent inflow. The resulting luminosity of the sidewall exceeds $\sim\! 30$ times the Eddington luminosity for neutron stars, which is consistent with the observed luminosity of ultra-luminous X-ray pulsars.

2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Shigeyuki Karino

Abstract The observed X-ray pulse period of OB-type high-mass X-ray binary (HMXB) pulsars is typically longer than 100 seconds. It is considered that the interaction between the strong magnetic field of a neutron star and the wind matter could cause such a long pulse period. In this study, we follow the spin evolution of neutron stars, taking into account the interaction between the magnetic field and wind matter. In this line, as new challenges, we solve the evolution of the magnetic field of the neutron star at the same time, and additionally we focus on the effects of the wind properties of the donor. As a result, evolutionary tracks were obtained in which the neutron star spends some duration in the ejector phase after birth, then rapidly spins down, becomes quasi-equilibrium, and gradually spins up. Such evolution is similar to previous studies, but we found that its dominant physics depends on the velocity of the donor wind. When the wind velocity is fast, the spin-down occurs due to magnetic inhibition, while the classical propeller effect and settling accretion shell causes rapid spin-down in the slow wind accretion. Since the wind velocity of the donor could depend on the irradiated X-ray luminosity, the spin evolution track of the neutron star in a wind-fed HMXB could be more complicated than considered.


2018 ◽  
Vol 616 ◽  
pp. A105 ◽  
Author(s):  
M. Sieniawska ◽  
M. Bejger ◽  
B. Haskell

Context. Observations of heavy (⋍2 M⊙) neutron stars, such as PSR J1614−2230 and PSR J0348+0432, in addition to the recent measurement of tidal deformability from the binary neutron-star merger GW170817, place interesting constraints on theories of dense matter. Currently operating and future observatories, such as the Neutron star Interior Composition Explorer (NICER) and the Advanced Telescope for High ENergy Astrophysics (ATHENA), are expected to collect information on the global parameters of neutron stars, namely masses and radii, with an accuracy of a few percent. Such accuracy will allow for precise comparisons of measurements to models of compact objects and significantly improve our understanding of the physics of dense matter. Aims. The dense-matter equation of state is still largely unknown. We investigate how the accuracy of measurements expected from the NICER and ATHENA missions will improve our understanding of the dense-matter interior of neutron stars. Methods. We compared global parameters of stellar configurations obtained using three different equations of state: a reference (SLy4 EOS) and two piecewise polytropes manufactured to produce mass-radius relations indistinguishable from an observational point of view, i.e. within the predicted error of radius measurement. We assumed observational errors on the radius determination corresponding to the accuracies expected for the NICER and ATHENA missions. The effect of rotation was examined using high-precision numerical relativity computations. Because masses and rotational frequencies might be determined very precisely in the most optimistic scenario, only the influence of observational errors on radius measurements was investigated. Results. We show that ±5% errors in radius measurement lead to ~10% and ~40% accuracy in central parameter estimations for low-mass and high-mass neutron stars, respectively. Global parameters, such as oblateness and surface area, can be established with 8–10% accuracy, even if only compactness (instead of mass and radius) is measured. We also report on the range of tidal deformabilities corresponding to the estimated masses of GW170817 for the assumed uncertainty in radius.


2020 ◽  
Vol 229 (22-23) ◽  
pp. 3651-3661
Author(s):  
Michał Marczenko

AbstractSeveral observations of high-mass neutron stars (NSs), as well as the first historic detection of the binary neutron star merger GW170817, have delivered stringent constraints on the equation of state (EoS) of cold and dense matter. Recent studies suggest that, in order to simultaneously accommodate a 2M⊙ NS and the upper limit on the compactness, the pressure has to swiftly increase with density and the corresponding speed of sound likely exceeds the conformal limit. In this work, we employ a unified description of hadron-quark matter, the hybrid quark-meson-nucleon (QMN) model, to investigate the EoS under NS conditions. We show that the dynamical confining mechanism of the model plays an important role in explaining the observed properties of NSs.


2019 ◽  
Vol 622 ◽  
pp. A174 ◽  
Author(s):  
M. Sieniawska ◽  
W. Turczański ◽  
M. Bejger ◽  
J. L. Zdunik

Context. Using parametric equations of state (relativistic polytropes and a simple quark bag model) to model dense-matter phase transitions, we study global, measurable astrophysical parameters of compact stars such as their allowed radii and tidal deformabilities. We also investigate the influence of stiffness of matter before the onset of the phase transitions on the parameters of the possible exotic dense phase. Aims. The aim of our study is to compare the parameter space of the dense matter equation of state permitting phase transitions to a sub-space compatible with current observational constraints such as the maximum observable mass, tidal deformabilities of neutron star mergers, radii of configurations before the onset of the phase transition, and to give predictions for future observations. Methods. We studied solutions of the Tolman-Oppenheimer-Volkoff equations for a flexible set of parametric equations of state, constructed using a realistic description of neutron-star crust (up to the nuclear saturation density), and relativistic polytropes connected by a density-jump phase transition to a simple bag model description of deconfined quark matter. Results. In order to be consistent with recent observations of massive neutron stars, a compact star with a strong high-mass phase transition cannot have a radius smaller than 12 km in the range of masses 1.2 − 1.6 M⊙. We also compare tidal deformabilities of stars with weak and strong phase transitions with the results of the GW170817 neutron star merger. Specifically, we study characteristic phase transition features in the Λ1 − Λ2 relation, and estimate the deviations of our results from the approximate formulæ for Λ∼ − R (M1) and Λ-compactness proposed in the literature. We find constraints on the hybrid equations of state to produce stable neutron stars on the twin branch. For the exemplary equations of state most of the high-mass twins occur for the minimum values of the density jump λ = 1.33 − 1.54; corresponding values of the square of the speed of sound are α = 0.7 − 0.37. We compare results with observations of gravitational waves and with the theoretical causal limit and find that the minimum radius of a twin branch is between 9.5 and 10.5 km, and depends on the phase transition baryon density. For these solutions the phase transition occurs below 0.56 fm−3.


1996 ◽  
Vol 165 ◽  
pp. 57-64
Author(s):  
Pranab Ghosh

In this symposium, I have been given the task of summarizing our current understanding of the evolutionary history of spin periods of the neutron stars that we now see as binary and millisecond pulsars, i.e., recycled pulsars. We believe that a newborn, fast-spinning neutron star (with a rather high magnetic field ∼1011–1013 G) in a binary system first operates as a spin-powered pulsar, subsequently as an accretion-powered pulsar when accretion begins after the pulsar has been spun down adequately, and finally as a spin-powered pulsar for the second time after having been recycled to become a very fast-rotating neutron star (with a rather low magnetic field ∼108–1011 G) (see Ghosh 1994a, b, hereafter G94a, b).


2019 ◽  
Vol 629 ◽  
pp. A88 ◽  
Author(s):  
A. Y. Potekhin ◽  
A. I. Chugunov ◽  
G. Chabrier

Aims. We study the long-term thermal evolution of neutron stars in soft X-ray transients (SXTs), taking the deep crustal heating into account consistently with the changes of the composition of the crust. We collect observational estimates of average accretion rates and thermal luminosities of such neutron stars and compare the theory with observations. Methods. We performed simulations of thermal evolution of accreting neutron stars, considering the gradual replacement of the original nonaccreted crust by the reprocessed accreted matter, the neutrino and photon energy losses, and the deep crustal heating due to nuclear reactions in the accreted crust. We also tested and compared results for different modern theoretical models. We updated a compilation of the observational estimates of the thermal luminosities in quiescence and average accretion rates in the SXTs and compared the observational estimates with the theoretical results. Results. The long-term thermal evolution of transiently accreting neutron stars is nonmonotonic. The quasi-equilibrium temperature in quiescence reaches a minimum and then increases toward the final steady state. The quasi-equilibrium thermal luminosity of a neutron star in an SXT can be substantially lower at the minimum than in the final state. This enlarges the range of possibilities for theoretical interpretation of observations of such neutron stars. The updates of the theory and observations leave the previous conclusions unchanged, namely that the direct Urca process operates in relatively cold neutron stars and that an accreted heat-blanketing envelope is likely present in relatively hot neutron stars in the SXTs in quiescence. The results of the comparison of theory with observations favor suppression of the triplet pairing type of nucleon superfluidity in the neutron-star matter.


2017 ◽  
Vol 13 (S337) ◽  
pp. 213-216
Author(s):  
Wynn C. G. Ho ◽  
Nils Andersson ◽  
Vanessa Graber

AbstractA superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest that magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron star core retains or is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 106 − 107yr. We estimate the size of flux free regions at 107yr to be ≲ 100m for a magnetic field of 1011G and possibly smaller for stronger field strengths.


1992 ◽  
Vol 128 ◽  
pp. 220-221
Author(s):  
George G. Pavlov

AbstractEven old (106 to 107 yr) pulsars within a few hundred parsecs of the Sun should give UV and optical fluxes via thermal radiation or radiation from relativistic particles. The surface temperature of a neutron star depends on its mass, radius, magnetic field, and internal composition (existence of pion condensate, superfluidity of nucléons, etc.). If the temperature exceeds ~2x104 K, the thermal radiation can be detected by the Hubble Space Telescope. An analysis of the results will allow one to study the thermal evolution and inner structure of neutron stars in order to obtain additional constraints on pulsar models.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 63
Author(s):  
Hui Wang ◽  
Zhi-Fu Gao ◽  
Huan-Yu Jia ◽  
Na Wang ◽  
Xiang-Dong Li

Young pulsars are thought to be highly magnetized neutron stars (NSs). The crustal magnetic field of a NS usually decays at different timescales in the forms of Hall drift and Ohmic dissipation. The magnetization parameter ω B τ is defined as the ratio of the Ohmic timescale τ O h m to the Hall drift timescale τ H a l l . During the first several million years, the inner temperature of the newly born neutron star cools from T = 10 9 K to T = 1.0 × 10 8 K, and the crustal conductivity increases by three orders of magnitude. In this work, we adopt a unified equations of state for cold non-accreting neutron stars with the Hartree–Fock–Bogoliubov method, developed by Pearson et al. (2018), and choose two fiducial dipole magnetic fields of B = 1.0 × 10 13 G and B = 1.0 × 10 14 G, four different temperatures, T, and two different impurity concentration parameters, Q, and then calculate the conductivity of the inner crust of NSs and give a general expression of magnetization parameter for young pulsars: ω B τ ≃ ( 1 − 50 ) B 0 / ( 10 13 G) by using numerical simulations. It was found when B ≤ 10 15 G, due to the quantum effects, the conductivity increases slightly with the increase in the magnetic field, the enhanced magnetic field has a small effect on the matter in the low-density regions of the crust, and almost has no influence the matter in the high-density regions. Then, we apply the general expression of the magnetization parameter to the high braking-index pulsar PSR J1640-4631. By combining the observed arrival time parameters of PSR J1640-4631 with the magnetic induction equation, we estimated the initial rotation period P 0 , the initial dipole magnetic field B 0 , the Ohm dissipation timescale τ O h m and Hall drift timescale τ H a l l . We model the magnetic field evolution and the braking-index evolution of the pulsar and compare the results with its observations. It is expected that the results of this paper can be applied to more young pulsars.


1998 ◽  
Vol 188 ◽  
pp. 374-375
Author(s):  
M. Fujita ◽  
T. Okuda

We investigate the accretion disks around compact objects with high mass accretion rates near the Eddington's critical value ME, where radiation pressure and electron scattering are dominant. This raises next problems: (a) whether stable disks could exist in relation to the theory of thermal instabilities of the disk and (b) what characteristic features the disks have if the stable disks exist. A non-rotating neutron star with the mass M = 1.4M⊙, radius R* = 107cm and the accretion rate Mac = 2.0 and 0.5Mac (models 1 and 2) is considered as the compact object. We assume the α-model for the viscosity and solve the set of two-dimensional time-dependent hydrodynamic equations coupled with radiation transport. The numerical method used is basically the same as one described by Kley and Hensler (1987) and Kley (1989) but we include some improvements in solving the difference equations (Okuda et al. 1997). The initial configuration consists of a cold, dense, and optically thick disk which is given by the standard α-model (Shakura and Sunyaev 1973) and a rarefied optically thin atmosphere around the disk.


Sign in / Sign up

Export Citation Format

Share Document