scholarly journals An undiscovered facet of hydraulic redistribution driven by evaporation—A study from a Populus tomentosa plantation

2021 ◽  
Author(s):  
Yang Liu ◽  
Nadezhda Nadezhdina ◽  
Nan Di ◽  
Xu Ma ◽  
Jinqiang Liu ◽  
...  

Abstract Maintenaining the activity and function of the shallow root system of plants is essential for withstanding drought stress, but the associated mechanism is poorly understood. By investigating sap flow in 14 lateral roots (LRs) randomly selected from trees of a Chinese white poplar (Populus tomentosa) plantation receiving three levels of irrigation, an unknown root-water transport mode of simultaneous daytime bi-directional water flow was discovered. This mode existed in five LRs confined to the surface soil without attached sinker roots. In the longer term, the bi-directional water flow was correlated with the soil water content. However, within the day, it was associated with transpiration. Our data demonstrated that bi-directional root sap flow occurred during the day, and was driven by evaporative demand, further suggesting the existence of circumferential water movement in the LR xylem. We named this phenomenon evaporation-driven hydraulic redistribution (EDHR). A soil-root water transport model was proposed to encapsulate this water movement mode. EDHR may be a crucial drought-tolerance mechanism that allows plants to maintain shallow root survival and activity by promoting root water recharge under extremely dry conditions.

2020 ◽  
Author(s):  
Patrick Ellsworth ◽  
Patricia Ellsworth ◽  
Rachel Mertz ◽  
Nuria Koteyeva ◽  
Asaph B. Cousins

AbstractOxygen isotopic composition (Δ18OLW) of leaf water can help improve our understanding of how anatomy interacts with physiology to influence leaf water transport. Leaf water isotope models of Δ18OLW such as the Péclet effect model have been developed to predict Δ18OLW, and it incorporates transpiration rate (E) and the mixing length between unenriched xylem water and enriched mesophyll water, which can occur in the mesophyll (Lm) or veins (Lv). Here we used two cell wall composition mutants grown under two light intensities and RH to evaluate the effect of cell wall composition on Δ18OLW. In maize (Zea mays), the compromised ultrastructure of the suberin lamellae in the bundle sheath of the ALIPHATIC SUBERIN FERULOYL TRANSFERASE mutant (Zmasft) reduced barriers to apoplastic water movement, resulting in higher E and Lv and, consequently, lower Δ18OLW. In cellulose synthase-like F6 (Cslf6) mutants and wildtype of rice (Oryza sativa), the difference in Δ18OLW in plants grown under high and low growth light intensity co-varied with their differences in stomatal density. These results show that cell wall composition and stomatal density influence Δ18OLW by altering the Péclet effect and that stable isotopes can facilitate the development of a physiologically and anatomically explicit water transport model.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2038
Author(s):  
Gennady Gladkov ◽  
Michał Habel ◽  
Zygmunt Babiński ◽  
Pakhom Belyakov

The paper presents recommendations for using the results obtained in sediment transport simulation and modeling of channel deformations in rivers. This work relates to the issues of empirical modeling of the water flow characteristics in natural riverbeds with a movable bottom (alluvial channels) which are extremely complex. The study shows that in the simulation of sediment transport and calculation of channel deformations in the rivers, it is expedient to use the calculation dependences of Chézy’s coefficient for assessing the roughness of the bottom sediment mixture, or the dependences of the form based on the field investigation data. Three models are most commonly used and based on the original formulas of Meyer-Peter and Müller (1948), Einstein (1950) and van Rijn (1984). This work deals with assessing the hydraulic resistance of the channel and improving the river sediment transport model in a simulation of riverbed transformation on the basis of previous research to verify it based on 296 field measurements on the Central-East European lowland rivers. The performed test calculations show that the modified van Rijn formula gives the best results from all the considered variants.


2021 ◽  
Author(s):  
Eva Messinger ◽  
Heinz Coners ◽  
Dietrich Hertel ◽  
Christoph Leuschner

<p>Climate models predict hotter and dryer summers in Germany, with longer periods of extreme droughts like in summer 2018. How does this affect the water uptake and transport in tree roots growing in the top- and subsoil?</p><p>In summer 2018 and 2019 we measured the water transport in fine roots (<5mm) of European Beech on tertiary sand and triassic sandstone up to 2 m depth. We adapted the well-established HRM technique to enable measurements of very small sap flow rates in small roots. Thus, we measured the water transport as a temperature ratio of a stretching heat pulse.</p><p>Relating sap flow to root surface area, root depth, anatomy, soil moisture, and VPD allows for interesting insights in tree water uptake rates: Where are the limits of drought intensity and duration, for water uptake and recovery of small roots? Are there differences in the function of top- and subsoil roots? Are roots specialized for water transport or nutrient uptake? The investigated data gives a first hint on how the water transport in Beech roots differs with changes in the soil moisture and VPD under changing climate.</p>


HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1784-1790 ◽  
Author(s):  
Dalong Zhang ◽  
Yuping Liu ◽  
Yang Li ◽  
Lijie Qin ◽  
Jun Li ◽  
...  

Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.


2017 ◽  
Author(s):  
Rico Hübner ◽  
Thomas Günther ◽  
Katja Heller ◽  
Ursula Noell ◽  
Arno Kleber

Abstract. Identifying principles of water movement in the shallow subsurface is crucial for adequate process-based hydrological models. Hillslopes are the essential interface for water movement in catchments. The shallow subsurface on slopes typically consist of different layers with varying characteristics. The aim of this study was to draw conclusion about the infiltration behaviour, to identify water flow pathways and derive general validity about the water movement on a hillslope with periglacial slope deposits (cover beds), where the layers differ in their sedimentological and hydrological properties. Especially the described varying influence of the basal layer (LB) as impeding layer on the one hand and as a remarkable pathway for rapid subsurface stormflow on the other. We used a time lapse 3D ERT approach combined with punctual hydrometric data to trace the spreading and the progression of an irrigation plume in layered slope deposits during two irrigation experiments. This multi-technical approach enables us to connect the high spatial resolution of the 3D ERT with the high temporal resolution of the hydrometric devices. Infiltration through the uppermost layer was dominated by preferential flow, whereas the water flow in the deeper layers was mainly matrix flow. Subsurface stormflow due to impeding characteristic of the underlying layer occurs in form of "organic layer interflow" and at the interface to the first basal layer (LB1). However, the main driving factor for subsurface stormflow is the formation of a capillary barrier at the interface to the second basal layer (LB2). The capillary barrier prevents water from entering the deeper layer under unsaturated conditions and diverts the seepage water according to the slope inclination. With higher saturation the capillary barrier breaks down and water reaches the highly conductive deeper layer. This highlights the importance of the capillary barrier effect for the prevention or activation of different flow pathways under variable hydrological conditions.


1996 ◽  
Vol 271 (6) ◽  
pp. H2254-H2262 ◽  
Author(s):  
O. Carlsson ◽  
S. Nielsen ◽  
el-R. Zakaria ◽  
B. Rippe

During peritoneal dialysis (PD), a major portion of the osmotically induced water transport to the peritoneum can be predicted to occur through endothelial water-selective channels. Aquaporin-1 (AQP-1) has recently been recognized as the molecular correlate to such channels. Aquaporins can be inhibited by mercurials. In the present study, HgCl2 was applied locally to the peritoneal cavity in rats after short-term tissue fixation, used to protect the tissues from HgCl2 damage. Dianeal (3.86%) was employed as dialysis fluid, 125I-albumin as an intraperitoneal volume marker, and 51Cr-EDTA (constantly infused intravenously) to assess peritoneal small-solute permeability characteristics. Immunocytochemistry and immunoelectron microscopy revealed abundant AQP-1 labeling in capillary endothelium in peritoneal tissues, representing sites for HgCl2 inhibition of water transport. HgCl2 treatment reduced water flow and inhibited the sieving of Na+ without causing any untoward changes in microvascular permeability, compared with that of fixed control rats, in which the peritoneal cavity was exposed to tissue fixation alone. In fixed control rats, the mean intraperitoneal volume (IPV) increased from 20.5 +/- 0.15 to 25.0 +/- 0.52 ml in 60 min, whereas in the HgCl2-treated rats, the increment was only from 20.7 +/- 0.23 to 23.5 +/- 0.4 ml. In fixed control rats, the dialysate Na+ fell from 135.3 +/- 0.97 to 131.3 +/- 1.72 mM, whereas in the HgCl2-treated rats the dialysate Na+ concentration remained unchanged between 0 and 40 min, further supporting that water channels had been blocked. Computer simulations of peritoneal transport were compatible with a 66% inhibition of water flow through aquaporins. The observed HgCl2 inhibition of transcellular water channels strongly indicates a critical role of aquaporins in PD and provides evidence that water channels are crucial in transendothelial water transport when driven by crystalloid osmosis.


1996 ◽  
Vol 271 (4) ◽  
pp. F871-F876 ◽  
Author(s):  
R. Quigley ◽  
M. Baum

The mammalian proximal tubule reabsorbs the bulk of the glomerular filtrate in a nearly isosmotic fashion due to the high osmotic water permeability (Pf) of this segment. Although the characteristics of proximal tubule water transport have been studied in the adult proximal tubule, little is known about the neonatal segment. The present study directly measured the Pf and diffusional water permeability (PDW) of neonatal (10 +/- 2 day old) and adult rabbit juxtamedullary proximal convoluted tubules (PCT) using in vitro microperfusion. The Pf of neonatal juxtamedullary PCT was greater than the Pf of adult juxtamedullary PCT. In contrast, the PDW was not different between the two groups. The Pf and PDW values of both neonatal and adult tubules were inhibited to the same degree by p-chloromercuribenzene sulfonate and had identical activation energies. The transepithelial reflection coefficients of NaCl and NaHCO3 were also found to be similar in both the neonatal and adult proximal tubules. Thus neonatal and adult juxtamedullary PCT have many characteristics of water transport that are identical; however, neonatal Pf is three to five times that of the adult value. This difference in Pf with identical PDW values may give an insight into the transepithelial pathway for water movement in the neonatal tubule.


Sign in / Sign up

Export Citation Format

Share Document