scholarly journals Black hole evolution in quantum-gravitational framework

Author(s):  
I Y Park

Abstract We found black hole evolution on a quantum-gravitational scattering framework with an aim to tackle the black hole information paradox. With this setup, various pieces of the system information are explicit from the start and unitary evolution is manifest throughout. The scattering amplitudes factorize into the perturbative part and nonperturbative part. The nonperturbative part is dominated by an instanton-type contribution, i.e., a black hole analogue of the Coleman-De Luccia’s bounce solution, and we propose that the Hawking radiation be identified with the particles generated by the vacuum decay. Our results indicate that the black hole degrees of freedom are entangled not only with the Hawking modes but also with the pre-Hawking modes. The Wald’s entropy charge measures their entanglement. The full quantum-gravitational entropy is defined as the vev of the Wald entropy charge. With this definition a shifted Page-like curve is generically generated and its quantum extension is readily defined.

2010 ◽  
Vol 25 (14) ◽  
pp. 1169-1176 ◽  
Author(s):  
I. Y. PARK

We propose a full-fledged open string framework that seems suited to study the black hole information paradox. We set up a configuration to compute the scattering amplitude of a IIB open string around a D5-brane. The D5-brane is situated at the origin of a transverse D3-brane. A string perturbation theory is employed where the geometry of the D5-brane is treated as a potential. We reason that the setup is capable of reconciling the unitary evolution of states and information loss that is measured by an observer on the D3 brane. With the configurations of these kinds, the information loss is an apparent phenomenon: it is just a manifestation of the fact that the D3-observer does not have access to the "hair" of the D5 black brane.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 940 ◽  
Author(s):  
Stefano Liberati ◽  
Giovanni Tricella ◽  
Andrea Trombettoni

Analogue gravity can be used to reproduce the phenomenology of quantum field theory in curved spacetime and in particular phenomena such as cosmological particle creation and Hawking radiation. In black hole physics, taking into account the backreaction of such effects on the metric requires an extension to semiclassical gravity and leads to an apparent inconsistency in the theory: the black hole evaporation induces a breakdown of the unitary quantum evolution leading to the so-called information loss problem. Here, we show that analogue gravity can provide an interesting perspective on the resolution of this problem, albeit the backreaction in analogue systems is not described by semiclassical Einstein equations. In particular, by looking at the simpler problem of cosmological particle creation, we show, in the context of Bose–Einstein condensates analogue gravity, that the emerging analogue geometry and quasi-particles have correlations due to the quantum nature of the atomic degrees of freedom underlying the emergent spacetime. The quantum evolution is, of course, always unitary, but on the whole Hilbert space, which cannot be exactly factorized a posteriori in geometry and quasi-particle components. In analogy, in a black hole evaporation one should expect a continuous process creating correlations between the Hawking quanta and the microscopic quantum degrees of freedom of spacetime, implying that only a full quantum gravity treatment would be able to resolve the information loss problem by proving the unitary evolution on the full Hilbert space.


2014 ◽  
Vol 23 (12) ◽  
pp. 1442024 ◽  
Author(s):  
Samir D. Mathur

The black hole information paradox has caused enormous confusion over four decades. But in recent years, the theorem of quantum strong-subadditivity has sorted out the possible resolutions into three sharp categories: (i) No new physics at r ≫ lp; this necessarily implies remnants/information loss. A realization of remnants is given by a baby universe attached near r ~ 0. (ii) Violation of the "no-hair" theorem by nontrivial effects at the horizon r ~ M. This possibility is realized by fuzzballs in string theory, and gives unitary evaporation. (iii) Having the vacuum at the horizon, but requiring that Hawking quanta at r ~ M3 be somehow identified with degrees of freedom inside the black hole. A model for this "extreme nonlocality" is realized by conjecturing that wormholes connect the radiation quanta to the hole.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yi Ling ◽  
Yuxuan Liu ◽  
Zhuo-Yu Xian

Abstract We study the information paradox for the eternal black hole with charges on a doubly-holographic model in general dimensions, where the charged black hole on a Planck brane is coupled to the baths on the conformal boundaries. In the case of weak tension, the brane can be treated as a probe such that its backreaction to the bulk is negligible. We analytically calculate the entanglement entropy of the radiation and obtain the Page curve with the presence of an island on the brane. For the near-extremal black holes, the growth rate is linear in the temperature. Taking both Dvali-Gabadadze-Porrati term and nonzero tension into account, we obtain the numerical solution with backreaction in four-dimensional spacetime and find the quantum extremal surface at t = 0. To guarantee that a Page curve can be obtained in general cases, we propose two strategies to impose enough degrees of freedom on the brane such that the black hole information paradox can be properly described by the doubly-holographic setup.


2012 ◽  
Vol 21 (11) ◽  
pp. 1242009 ◽  
Author(s):  
MARCELO BOTTA CANTCHEFF

We argue that a nonperturbative description of quantum gravity should involve two (noninteracting) copies of a dual field theory on the boundary, and describe the states of the spacetimes accordingly. So, for instance, a complete description of the asymptotically Anti-de-Sitter (AdS) spacetimes is given by two copies of the conformal field theory (CFT) associated to the global AdS spacetime. We also argue that, in this context, gravitational collapse and formation of a black hole may be described by unitary evolution of the dual nonperturbative degrees of freedom.


2013 ◽  
Vol 22 (12) ◽  
pp. 1342002 ◽  
Author(s):  
TED JACOBSON

Both AdS/CFT duality and more general reasoning from quantum gravity point to a rich collection of boundary observables that always evolve unitarily. The physical quantum gravity states described by these observables must be solutions of the spatial diffeomorphism and Wheeler–De Witt constraints, which implies that the state space does not factorize into a tensor product of localized degrees of freedom. The "firewall" argument that unitarity of black hole S-matrix implies the presence of a highly excited quantum state near the horizon is based on such a factorization, hence is not applicable in quantum gravity. In fact, there appears to be no conflict between boundary unitarity and regularity of the event horizon.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Elena Caceres ◽  
Arnab Kundu ◽  
Ayan K. Patra ◽  
Sanjit Shashi

Abstract We use the notion of double holography to study Hawking radiation emitted by the eternal BTZ black hole in equilibrium with a thermal bath, but in the form of warped CFT2 degrees of freedom. In agreement with the literature, we find entanglement islands and a phase transition in the entanglement surface, but our results differ significantly from work in AdS/CFT in three major ways: (1) the late-time entropy decreases in time, (2) island degrees of freedom exist at all times, not just at late times, with the phase transition changing whether or not these degrees of freedom include the black hole interior, and (3) the physics involves a field-theoretic IR divergence emerging when the boundary interval is too big relative to the black hole’s inverse temperature. This behavior in the entropy appears to be consistent with the non-unitarity of holographic warped CFT2 and demonstrates that the islands are not a phenomenon restricted to black hole information in unitary setups.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 408
Author(s):  
Matteo Villani ◽  
Guillermo Albareda ◽  
Carlos Destefani ◽  
Xavier Cartoixà ◽  
Xavier Oriols

Without access to the full quantum state, modeling quantum transport in mesoscopic systems requires dealing with a limited number of degrees of freedom. In this work, we analyze the possibility of modeling the perturbation induced by non-simulated degrees of freedom on the simulated ones as a transition between single-particle pure states. First, we show that Bohmian conditional wave functions (BCWFs) allow for a rigorous discussion of the dynamics of electrons inside open quantum systems in terms of single-particle time-dependent pure states, either under Markovian or non-Markovian conditions. Second, we discuss the practical application of the method for modeling light–matter interaction phenomena in a resonant tunneling device, where a single photon interacts with a single electron. Third, we emphasize the importance of interpreting such a scattering mechanism as a transition between initial and final single-particle BCWF with well-defined central energies (rather than with well-defined central momenta).


Sign in / Sign up

Export Citation Format

Share Document