THE STABILITY OF A HORIZONTAL LAYER OF DIELECTRIC FLUID UNDER THE SIMULTANEOUS ACTION OF A VERTICAL DC ELECTRIC FIELD AND A VERTICAL TEMPERATURE GRADIENT

1976 ◽  
Vol 29 (1) ◽  
pp. 71-87 ◽  
Author(s):  
M. TAKASHIMA ◽  
K. D. ALDRIDGE
1978 ◽  
Vol 35 (11) ◽  
pp. 1430-1433 ◽  
Author(s):  
Wen-Hwa Kwain ◽  
Robert W. McCauley

During their first 12 mo of life rainbow trout, Salmo gairdneri, preferred progressively cooler temperatures as they grew older; 19 °C was selected during the 1st mo and the selected temperature declined by intervals of 0.5 °C for each of the following months up to the 3rd mo. Fish swam higher in temperature gradients exposed to overhead illumination than in those in total darkness. This trend was reversed during the following 9 mo. These findings demonstrate the important role that age plays in the temperature preference of this species and the influence that overhead light may have on the distribution of fish in vertical gradients. Key words: preferred temperature, age, Salmo gairdneri, light gradients


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
B. M. Shankar ◽  
Jai Kumar ◽  
I. S. Shivakumara

The stability of natural convection in a dielectric fluid-saturated vertical porous layer in the presence of a uniform horizontal AC electric field is investigated. The flow in the porous medium is governed by Brinkman–Wooding-extended-Darcy equation with fluid viscosity different from effective viscosity. The resulting generalized eigenvalue problem is solved numerically using the Chebyshev collocation method. The critical Grashof number Gc, the critical wave number ac, and the critical wave speed cc are computed for a wide range of Prandtl number Pr, Darcy number Da, the ratio of effective viscosity to the fluid viscosity Λ, and AC electric Rayleigh number Rea. Interestingly, the value of Prandtl number at which the transition from stationary to traveling-wave mode takes place is found to be independent of Rea. The interconnectedness of the Darcy number and the Prandtl number on the nature of modes of instability is clearly delineated and found that increasing in Da and Rea is to destabilize the system. The ratio of viscosities Λ shows stabilizing effect on the system at the stationary mode, but to the contrary, it exhibits a dual behavior once the instability is via traveling-wave mode. Besides, the value of Pr at which transition occurs from stationary to traveling-wave mode instability increases with decreasing Λ. The behavior of secondary flows is discussed in detail for values of physical parameters at which transition from stationary to traveling-wave mode takes place.


The investigation of the upper air by means of balloons carrying self-recording instruments, which have furnished values for the atmospheric temperature up to heights between 15 and 20 kilometres, has revealed the existence of an abnormal change in the vertical temperature gradient. After a fairly uniform fall, with increasing altitude, of about 6° C. per kilometre, a height is reached above which the temperature changes very little, sometimes increasing, sometimes diminishing slowly. The phenomenon was first noticed by M. Teisserenc de Bort in a communication to the Société de Physique in June, 1899. He improved his apparatus and made further investigations, in many cases sending up the balloons by night to eliminate any possible insolation effects. He found the average height, at which the change began, to be about 11 kilometres. He discovered also that the height was greater near the centre of high pressure areas than in low pressure areas, the average heights for the two cases being 12-5 and 10 kilometres respectively. More recently he found that the height increased with approach towards the equator and that near the equator, ballons-sondes , ascending to 15 kilometres, had failed to reach this layer if it existed there. He proposed to call this layer, in which little temperature change occurred, the “Isothermal Layer of the Atmosphere,” and the name has been generally accepted.


2016 ◽  
Vol 9 (6) ◽  
pp. 3073-3086 ◽  
Author(s):  
B. M. Shankar ◽  
J. Kumar ◽  
I. S. Shivakumara ◽  
S. B. Naveen Kumar ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document