Computer simulation of strand break yields in plasmid pBR322: DNA damage following 125I decay

2006 ◽  
Vol 122 (1-4) ◽  
pp. 136-140 ◽  
Author(s):  
S. Edel ◽  
M. Terrissol ◽  
A. Peudon ◽  
E. Kümmerle ◽  
E. Pomplun
2021 ◽  
Vol 1 (2) ◽  
pp. 225-238
Author(s):  
Mohsen Hooshyar ◽  
Daniel Burnside ◽  
Maryam Hajikarimlou ◽  
Katayoun Omidi ◽  
Alexander Jesso ◽  
...  

DNA double-strand breaks (DSBs) are the most deleterious form of DNA damage and are repaired through non-homologous end-joining (NHEJ) or homologous recombination (HR). Repair initiation, regulation and communication with signaling pathways require several histone-modifying and chromatin-remodeling complexes. In budding yeast, this involves three primary complexes: INO80-C, which is primarily associated with HR, SWR1-C, which promotes NHEJ, and RSC-C, which is involved in both pathways as well as the general DNA damage response. Here we identify ARP6 as a factor involved in DSB repair through an RSC-C-related pathway. The loss of ARP6 significantly reduces the NHEJ repair efficiency of linearized plasmids with cohesive ends, impairs the repair of chromosomal breaks, and sensitizes cells to DNA-damaging agents. Genetic interaction analysis indicates that ARP6, MRE11 and RSC-C function within the same pathway, and the overexpression of ARP6 rescues rsc2∆ and mre11∆ sensitivity to DNA-damaging agents. Double mutants of ARP6, and members of the INO80 and SWR1 complexes, cause a significant reduction in repair efficiency, suggesting that ARP6 functions independently of SWR1-C and INO80-C. These findings support a novel role for ARP6 in DSB repair that is independent of the SWR1 chromatin remodeling complex, through an apparent RSC-C and MRE11-associated DNA repair pathway.


2002 ◽  
Vol 43 (2) ◽  
pp. 153-153 ◽  
Author(s):  
REMA RAJAGOPALAN ◽  
KHALIDA WANI ◽  
NAGARAJ G. HUILGOL ◽  
TSUTOMU V. KAGIYA ◽  
CHERUPALLY K. KRISHNAN NAIR

2013 ◽  
Vol 33 (16) ◽  
pp. 3286-3298 ◽  
Author(s):  
Zhongqi Ge ◽  
Devi Nair ◽  
Xiaoyan Guan ◽  
Neha Rastogi ◽  
Michael A. Freitas ◽  
...  

The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.


2017 ◽  
Vol 372 (1731) ◽  
pp. 20160283 ◽  
Author(s):  
N. Daniel Berger ◽  
Fintan K. T. Stanley ◽  
Shaun Moore ◽  
Aaron A. Goodarzi

Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.


Genetics ◽  
2021 ◽  
Author(s):  
Tingting Li ◽  
Ruben C Petreaca ◽  
Susan L Forsburg

Abstract Chromatin remodeling is essential for effective repair of a DNA double strand break. KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA double strand break (DSB), including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination. These phenotypes of mst1 are similar to pht1-4KR, a non-acetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs towards homologous recombination pathways by modulating resection at the double strand break.


2020 ◽  
Author(s):  
Kenta Shinoda ◽  
Dali Zong ◽  
Elsa Callen ◽  
Wei Wu ◽  
Lavinia C. Dumitrache ◽  
...  

AbstractThe Shieldin complex, consisting of SHLD1, SHLD2, SHLD3 and REV7, shields DNA double strand breaks (DSBs) from nucleolytic resection. The end-protecting activity of Shieldin promotes productive non-homologous end joining (NHEJ) in G1 but can threaten genome integrity during S-phase by blocking homologous recombination (HR). Curiously, the penultimate Shieldin component, SHLD1 is one of the least abundant mammalian proteins. Here, we report that the transcription factors THAP1, YY1 and HCF1 bind directly to the SHLD1 promoter, where they cooperatively maintain the low basal expression of SHLD1. Functionally, this transcriptional network ensures that SHLD1 protein levels are kept in check to enable a proper balance between end protection and end resection during physiological DSB repair. In the context of BRCA1 deficiency, loss of THAP1 dependent SHLD1 expression confers cross resistance to PARP inhibitor and cisplatin, and shorter progression free survival in ovarian cancer patients. In contrast, loss of THAP1 in BRCA2 deficient cells increases genome instability and correlates with improved responses to chemotherapy. Pathogenic THAP1 mutations are causatively linked to the adult-onset torsion dystonia type 6 (DYT6) movement disorder, but the critical disease targets are unknown. We further demonstrate that murine models of Thap1-associated dystonia show reduced Shld1 expression concomitant with elevated levels of unresolved DNA damage in the brain. In summary, our study provides the first example of a transcriptional network that directly controls DSB repair choice and reveals a previously unsuspected link between DNA damage and dystonia.


2021 ◽  
Author(s):  
Julian Lutze ◽  
Donald Wolfgeher ◽  
Stephen J. Kron

AbstractThe majority of cancer patients is treated with ionizing radiation (IR), a relatively safe and effective treatment considered to target tumors by inducing DNA double strand breaks (DSBs). Despite clinical interest in increasing the efficacy of IR by preventing successful DSB repair, few effective radio-adjuvant therapies exist. Extensive literature suggests that chromatin modifiers play a role in the DSB repair and thus may represent a novel class of radiosensitizers. Indeed, chromatin has both local and global impacts on DSB formation, recognition of breaks, checkpoint signaling, recruitment of repair factors, and timely DSB resolution, suggesting that epigenetic deregulation in cancer may impact the efficacy of radiotherapy. Here, using tandem mass spectrometry proteomics to analyze global patterns of histone modification in MCF7 breast cancer cells following IR exposure, we find significant and long-lasting changes to the epigenome. Our results confirm that H3K27 trimethylation (H3K27me3), best known for mediating gene repression and regulating cell fate, increases after IR. H3K27me3 changes rapidly, accumulating at sites of DNA damage. Inhibitors of the Polycomb related complex subunit and H3K27 methyltransferase EZH2 confirm that H3K27me3 is necessary for DNA damage recognition and cell survival after IR. These studies provide an argument for evaluating EZH2 as a radiosensitization target and H3K27me3 as a marker for radiation response in cancer. Proteomic data are available via ProteomeXchange with identifier PXD019388.


Sign in / Sign up

Export Citation Format

Share Document