EVALUATION OF DOSE IN SLEEP BY MATTRESS CONTAINING MONAZITE

2019 ◽  
Vol 187 (3) ◽  
pp. 286-299
Author(s):  
Bong-Gi Kim ◽  
Kyu-Hwan Jeong ◽  
Hyeong-Ki Shin

Abstract Some companies in Korea have sold beds which contain a processed product containing monazite powder. Consumers may receive external exposure by radiation emitted by progeny radionuclides in uranium and thorium, and internal exposure through the breathing of radon progeny radionuclides produced in the decay chain. Thus, in this study, age specific dose conversion factors (mSv y−1 Bq−1) by external exposure and dose conversion factors by internal exposure (mSv y−1 per Bq m−3) were derived. Besides, a dose assessment program were developed to calculate dose by taking into account real conditions. And the age specific dose was evaluated using the radioactive concentration measured by the NSSC. As a results, external exposure was assessed to get effective doses in the range of 0.00086 to 0.0015 mSv y−1 by external exposure and a committed effective doses in the range of 1.3 to 12.26 mSv y−1 by internal exposure for all age groups.

Author(s):  
Michal Panik ◽  
Vladimir Necas

This paper presents ongoing results of the project presented at ICEM’10 [1] related to the topics of reusing the conditionally released materials from decommissioning. The subject of the reuse of conditionally released materials in this case is modeling of bridge constructions which reuse the conditionally released steel in the form of reinforcement bars for the concrete bridges. A general approach for the project was presented at ICEM’10. The activities of the project continue in evaluating the individual effective doses from the external exposure based on reused conditionally released steels separately for public and for professionals (the internal exposure will be evaluated in next stages of the project). Evaluated scenarios are related to critical groups of professionals constructing the bridges (worker’s scenarios). The computer code VISIPLAN 3D ALARA 4.0 planning tool was used for the calculation of the individual effective dose for professionals. Various limits of the annual individual effective dose are used for the evaluation of calculation results. The aim of the ongoing modeling is to develop a set of data of maximal radioactivity concentration for individual radionuclides in the conditionally released steel used in the bridges model constructions in order not to exceed the limits for the individual effective dose.


Author(s):  
V. I. Orlovskaya ◽  
I. G. Trifonov

Assessment of radiation effect on nuclear power plant staff was made for beyond design basis accident (4 hours period). The considered accident scenario includes emergency radionuclide emission through containment bypass. Assessment of radiation effect on NPP staff was done on the basis of radionuclide concentration distribution on site considering typical infrastructure. Concentration mapping was calculated by developed program module for COMSOL 3.5a application. The obtained data included average volume radionuclide activities in lower air layer, total inhalation dose, effective dose of external exposure, equivalent and effective dose in thyroid and total effective dose for NPP staff during beyond design basis accident. Doses from radioactive cloud (external exposure) and from inhalation (internal exposure) were estimated for the following radionuclides: 137Cs, 134Cs, 131I, 133I, 90Sr. In the case of selected beyond design basis accident the total effective dose of staff is 61,98 mSv for the first 4 hours after the accident beginning. This number is slightly above the threshold of the allowable annual dose limit for personnel in emergency situations (50 mSv). Taking into account that short-lived iodine radionuclides 131I и133I give the main contribution in the dose (50.23 mSv including 27.23 mSv for thyroid), such emergency actions as respiratory protection and iodine prophylaxis for the staff can significantly decrease the received doses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
C. Rääf ◽  
V. Barkauskas ◽  
K. Eriksson Stenström ◽  
C. Bernhardsson ◽  
H. B. L. Pettersson

AbstractThe pure alpha emitter 148Gd may have a significant radiological impact in terms of internal dose to exposed humans in case of accidental releases from a spallation source using a tungsten target, such as the one to be used in the European Spallation Source (ESS). In this work we aim to present an approach to indirectly estimate the whole-body burden of 148Gd and the associated committed effective dose in exposed humans, by means of high-resolution gamma spectrometry of the gamma-emitting radiogadolinium isotopes 146Gd and 153Gd that are accompanied by 148Gd generated from the operation of the tungsten target. Theoretical minimum detectable whole-body activity (MDA) and associated internal doses from 148Gd are calculated using a combination of existing biokinetic models and recent computer simulation studies on the generated isotope ratios of 146Gd/148Gd and 153Gd/148Gd in the ESS target. Of the two gamma-emitting gadolinium isotopes, 146Gd is initially the most sensitive indicator of the presence of 148Gd if whole-body counting is performed within a month after the release, using the twin photo peaks of 146Gd centered at 115.4 keV (MDA < 1 Bq for ingested 148Gd, and < 25 Bq for inhaled 148Gd). The corresponding minimum detectable committed effective doses will be less than 1 µSv for ingested 148Gd, but substantially higher for inhaled 148Gd (up to 0.3 mSv), depending on operation time of the target prior to the release. However, a few months after an atmospheric release, 153Gd becomes a much more sensitive indicator of body burdens of 148Gd, with a minimum detectable committed effective doses ranging from 18 to 77 µSv for chronic ingestion and between 0.65 to 2.7 mSv for acute inhalation in connection to the release. The main issue with this indirect method for 148Gd internal dose estimation, is whether the primary photon peaks from 146 and 153Gd can be detected undisturbed. Preliminary simulations show that nuclides such as 182Ta may potentially create perturbations that could impair this evaluation method, and which impact needs to be further studied in future safety assessments of accidental target releases.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5840
Author(s):  
Enver Faella ◽  
Simona Mancini ◽  
Michele Guida ◽  
Albina Cuomo ◽  
Domenico Guida

Radon is a naturally occurring radioactive gas present in the hydrosphere, lithosphere and atmosphere abundantly. Its ionizing radiation provides the largest human internal exposure by inhalation and ingestion to natural sources, constituting a serious health hazard. The contribution to total exposure is mainly due to inhalation, as ingestion by food or drinking water is typically very small. However, because of public health concerns, the contributions from all these sources are limited by regulations and remedial action should be taken in the event that the defined threshold values are overcome. In this paper, the first campaign of measurements to control the radon activity concentration in drinking water from public water supplies in the province of Salerno, south Italy, is described. The results represent a main reference for the area, as it was never investigated before. The purpose of this survey was to contribute to data compilation concerning the presence of radon-222 in groundwater in the Campania region and to determine the associated risk for different age groups. The maximum radon activity concentrations and the related total annual public effective dose turned out to be lower than the threshold values (100 Bq/l and 0.1 mSv/y, respectively) indicated by international guidelines and the national regulation, showing that the health risks for public consumption can be considered negligible.


Author(s):  
Anas M Ababneh ◽  
Qutad M Samarah

Abstract It is inevitable that we are exposed to radiation daily from various sources and products that we consume on daily basis. The use of toothpaste for oral hygiene is one of the most common daily practices by humans and yet very little data are available regarding its radiation content. In this work, we investigated the concentrations of gamma emitting radionuclides in toothpaste samples consumed in Jordan. 40K and 226Ra were detected in almost one-third of the samples, whereas 228Ra was detected in nearly half of them. The corresponding activity concentrations in the detected samples were in the ranges of 68.7–154.2, 4.6–14.1 and 1.3–10.0 Bq/kg, respectively. Dose assessment of accidental ingestion of toothpaste for children and adults was made, and its contribution to the annual effective dose was found to be very minimal with maximum doses of ~2.9 and 1.3 μSv for children and adults, respectively.


2021 ◽  
Author(s):  
Larisa A. Chipiga ◽  
Anna E. Petrova ◽  
Artem A. Mosunov ◽  
Laura T. Naurzbaeva ◽  
Stanislaus M. Kushnarenko ◽  
...  

In connection with the constantly increasing use of monoclonal antibodies labeled with 89Zr, in clinical practice, it is urgent to study their pharmacokinetics with the determination, based on the data obtained, of absorbed doses in tumor foci, as well as intact organs and tissues, and effective doses of patients. To date, there are a limited number of studies that provide patient doses for diagnostic examinations using 89Zr-labeled monoclonal antibodies. In this regard, the purpose of this work was to assess the biodistribution of various monoclonal antibodies (ramucirumab, trastuzumab, atezolizumab) labeled with 89Zr, based on published data, with subsequent calculation of absorbed doses in radiosensitive organs and tissues and effective doses of patients. Based on the analysis of experimental data on the biodistribution of monoclonal antibodies labeled with 89Zr for the diagnosis of oncological diseases from the available literature sources and our own assessments, it has been concluded that the results of the determination of absorbed in organs and tissues and effective doses are inconsistent. The absorbed doses in organs, according to different literature sources, vary up to an order of magnitude within one organ and reach 440 mGy per examination, the effective dose varies from 3 to 112 mSv per examination. This may be due to differences in study design, radiometry and dose assessment methods. Comparison with doses obtained on the basis of a general model of biodistribution of monoclonal antibodies demonstrates the possibility of using this model for a rough estimate of internal doses of patients. However, for a more accurate assessment, it is necessary to standardize approaches to the determination of internal radiation doses using the most effective methodological solutions and software products.


PEDIATRICS ◽  
1956 ◽  
Vol 18 (1) ◽  
pp. 31-38
Author(s):  
Paul R. Patterson ◽  
Earle L. Lipton ◽  
Klaus R. Unna ◽  
Kurt Glaser

The susceptibility of healthy children to neostigmine by hypodermic injection was studied in controlled experiments on 45 children ranging in age from 1 month to 12 years. Minimum effective doses (MED) of neostigmine were determined by their effect in stimulating salivary and sweat glands, and in increasing gastrointestinal motility. The MED of neostigmine for stimulation of salivation is in all age groups smaller (by 6 to 38 per cent) than the MED increasing gastrointestinal motility. The average MED either for glandular (.025 to .036 mg./kg.) or gastrointestinal (.036 to .045 mg./kg.) activity fails to show significant differences among the various age groups when expressed in terms of body weight. Exceptions were found exclusively in children weighing more than 30 kg. The findings do not support the view that a physiologic vagotonia is present in infants.


2017 ◽  
Vol 15 (1) ◽  
pp. 82-93
Author(s):  
O O ALATISE ◽  
Y S AKINSANYA

In this work, the presence of natural radioactivity in bottled waters from parts of south-west Nigeria was investigated. The activity concentrations of 226Ra, 232Th and 40K in the water samples were ob-tained using a high-purity germanium detector. The ranges of activity concentrations obtained for 232Th, 226Ra and 40K were 0.15 to 1.25Bq l-1, 0.02 to 2.94Bq l-1 and 6.96 to 46.47 Bq l-1, respectively. 40K has the highest activity concentration in the bottled water samples while 232Th has the least value. The activity concentrations obtained together with ingested dose conversion factors, were used to calculate the annual effective doses for six age groups ranging from < 1 to >17 years. The calculated total annual effective doses (mSvy-1) ranged from 0.01 to 4.16 and the values are age dependent (highest for < 1year and lowest for 7-12years age groups). The results showed that the average annu-al effective dose for 35% of the bottled water brands were below the World Health Organization (WHO) recommended level of 0.1 mSvy-1 for drinking water. Furthermore, out of the remaining 65% that were higher than the WHO recommended level, 9% were higher than 1 mSvy-1, which is the radia-tion exposure limit for the general public according to the recommendation of the International Com-mission on Radiological Protection. Consequently, consumption of some of the bottled water brands investigated in this study could constitute radiological hazard especially for the < 1 and 12-17years age groups.


2020 ◽  
Vol 189 (3) ◽  
pp. 318-322
Author(s):  
Ritva Bly ◽  
Hannu Järvinen ◽  
Sampsa Kaijaluoto ◽  
Verneri Ruonala

Abstract Contemporary collective effective doses to the population from x-ray and nuclear medicine examinations in Finland in 2018 was estimated. The estimated effective dose per caput from x-ray examinations increased from year 2008 to 2018 respectively from 0.45 mSv to 0.72 mSv and from nuclear medicine examinations from 0.03 mSv to 0.04 mSv. The proportional dose due to CT examinations of the total collective effective dose from all x-ray examinations increased from 58% in 2008 to 70% in 2018 and the dose did not change substantially in total when new conversion factors were applied. The collective effective dose from conventional plain radiography did not change substantially during the last ten years while the new (ICRP 103) tissue weighting factors were taken into use in 2018, however frequencies of examinations in total decreased. The collective effective dose from CT in nuclear medicine tripled between 2009 and 2018.


Sign in / Sign up

Export Citation Format

Share Document