Effects of elevated carbon dioxide and elevated temperature on morphological, physiological and anatomical responses of Eucalyptus tereticornis along a soil phosphorus gradient

2019 ◽  
Vol 39 (11) ◽  
pp. 1821-1837 ◽  
Author(s):  
Honglang Duan ◽  
Josephine Ontedhu ◽  
Paul Milham ◽  
James D Lewis ◽  
David T Tissue

Abstract Eucalypts are likely to play a critical role in the response of Australian forests to rising atmospheric CO2 concentration ([CO2]) and temperature. Although eucalypts are frequently phosphorus (P) limited in native soils, few studies have examined the main and interactive effects of P availability, [CO2] and temperature on eucalypt morphology, physiology and anatomy. To address this issue, we grew seedlings of Eucalyptus tereticornis Smith across its P-responsive range (6–500 mg kg−1) for 120 days under two [CO2] (ambient: 400 μmol mol−1 (Ca) and elevated: 640 μmol mol−1 (Ce)) and two temperature (ambient: 24/16 °C (Ta) and elevated: 28/20 °C (Te) day/night) treatments in a sunlit glasshouse. Seedlings were well-watered and supplied with otherwise non-limiting macro- and micro-nutrients. Increasing soil P supply increased growth responses to Ce and Te. At the highest P supplies, Ce increased total dry mass, leaf number and total leaf area by ~50%, and Te increased leaf number by ~40%. By contrast, Ce and Te had limited effects on seedling growth at the lowest P supply. Soil P supply did not consistently modify photosynthetic responses to Ce or Te. Overall, effects of Ce and Te on growth, physiological and anatomical responses of E. tereticornis seedlings were generally neutral or negative at low soil P supply, suggesting that native tree responses to future climates may be relatively small in native low-P soils in Australian forests.

2016 ◽  
Vol 53 (1) ◽  
pp. 1-11 ◽  
Author(s):  
FERNANDO C. BACHIEGA ZAMBROSI ◽  
RAFAEL VASCONCELOS RIBEIRO ◽  
EDUARDO CARUSO MACHADO ◽  
JÚLIO CÉSAR GARCIA

SUMMARYThe shoot regrowth vigour of sugarcane varieties having contrasting phosphorus (P) efficiency was evaluated under varying soil P availability. The P-inefficient (IAC91–1099 and IACSP94–2101) and -efficient (IACSP94–2094 and IACSP95–5000) sugarcane varieties were grown under low (25 mg P kg−1 soil) or high (400 mg P kg−1 soil) P supply at planting. After 90 days (first cycle of growth), the shoots were harvested and regrowth was studied 70–75 days later by evaluating photosynthesis, leaf area formation, biomass production and P uptake. The shoot dry matter (DM) of sugarcane regrowth subjected to a low P supply was genotype-dependent, with the P-efficient varieties exhibiting greater values than the inefficient ones. This result was explained by the greater efficiency of IACSP94–2094 and IACSP95–5000 in acquiring P rather than P utilization efficiency for shoot biomass production. The root P stored during the first cycle of growth would represent only a minor fraction (< 20%) of the total P content in the shoots at the end of the regrowth period. Thus, we argue that the improved shoot P uptake of the P-efficient varieties was related to their ability to sustain P acquisition after harvesting rather than to the remobilization of root P reserves. Moreover, our data revealed that net CO2 assimilation per leaf area was not associated with differential performance among varieties under P deficiency, suggesting a more critical role of total leaf area in photosynthate supply for sugarcane regrowth. In conclusion, sugarcane regrowth is improved in P-efficient varieties under P deficiency conditions, a finding of practical relevance as such ability might benefit the productivity and the longevity of sugarcane ratoons in low P tropical soils.


2002 ◽  
Vol 17 (4) ◽  
pp. 209-215 ◽  
Author(s):  
Kevin R. Brown

Abstract The growth of young red alder on Vancouver Island may increase with phosphorus (P) availability. In order to better interpret growth responses in field fertilization trials, this study examined the effects of P additions (10, 100, 200, or 400 kg P/ha) on the growth and nutrient uptake of red alder seedlings grown in outdoor sandbeds for one growing season. Height did not increase with P supply. Stem growth and whole-plant mass increased with P rate from 10 to 100 kg/ha, but did not increase further at greater rates of P addition. Stem volumes, averaged across the P100, P200 and P400 treatments, were 37% greater than in the P10 treatment. Volume and mass did not increase as foliar P concentrations exceeded 2.2 g P/kg. These responses were consistent with data from field trials. Reduced growth in the P10 treatment was not accompanied by significantly reduced foliar P concentrations. Increases in stem volume with P supply were associated with increases in the amount of branching and foliage borne on branches but not with shifts in allocation of dry matter from roots to shoots. West. J. Appl. For. 17(4):209–215.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 573b-573
Author(s):  
Jonathan Lynch

Low P availability is a primary limitation to plant growth on most native soils. Crop genotypes differ substantially in their ability to grow in low P soils. Understanding the physiological basis for such variation would be useful in developing genotypes with superior P efficiency, which would have utility in low-input systems and might permit more. efficient fertilizer use in high-input systems. In common bean (Phasecolus vulgaris), growth under P stress is reduced because of increased C costs of the root system. Genetic contrasts in P efficiency were not associated with reduced shoot requirement, mycorrhizal associations, chemical interactions with specific soil P pools, or root system size, but were associated with root system architecture. SimRoot, an explicit geometric model of bean root growth, confirmed that architectural traits can influence the relationship of root C costs and P acquisition. Root growth responds dynamically to P stress, through changes in the proliferation of lateral roots and the geotropic response of basal roots. Differences in root architecture arising from these growth responses to P stress may account for genetic differences in P efficiency.


2011 ◽  
Vol 62 (11) ◽  
pp. 992 ◽  
Author(s):  
Jiayin Pang ◽  
Mark Tibbett ◽  
Matthew D. Denton ◽  
Hans Lambers ◽  
Kadambot H. M. Siddique ◽  
...  

Developing new perennial pasture legumes for low-P soils is a priority for Australian Mediterranean agro-ecosystems, where soil P availability is naturally low. As legumes tend to require higher P inputs than non-legumes, the ability of these plants to fix N2 under varying soil P levels must be determined. Therefore, the objective of this study was to investigate the influence of soil P supply on plant N status and nodule formation in 11 perennial legumes, including some novel pasture species. We investigated the effect of applying soil P, ranging from 0 to 384 μg P/g dry soil, on plant N status and nodulation in a glasshouse. Without exogenous P supply, shoot N concentration and N : P ratio were higher than at 6 μg P/g soil. Shoot N concentration and N : P ratio then changed little with further increase in P supply. There was a close positive correlation between the number of nodules and shoot P concentration in 7 of the 11 species. Total nodule dry weight and the percentage of plant dry weight that consisted of nodules increased when P supply increased from 6 to 48 μg P/g. Without exogenous P addition, N : P ratios partitioned into a two-group distribution, with species having a N : P ratio of either >70 or <50 g/g. We suggest that plants with a high N : P ratio may take up N from the soil constitutively, while those with a low N : P ratio may regulate their N uptake in relation to internal P concentration. The flexibility of the novel pasture legumes in this study to adjust their leaf N concentrations under different levels of soil P supplements other published evidence of good growth and high P uptake and P-use efficiency under low soil P supply and suggests their potential as pasture plants in low-P soils in Australian Mediterranean agro-ecosystems warrants further attention.


2007 ◽  
Vol 31 (3) ◽  
pp. 499-506 ◽  
Author(s):  
Adelson Paulo Araújo ◽  
Flavio Yuudi Kubota ◽  
Marcelo Grandi Teixeira

Responses of leaf senescence to P supply could constitute adaptive mechanisms for plant growth under P-limiting conditions. The aim of this study was to evaluate the effects of soil P supply on leaf senescence of common bean (Phaseolus vulgaris L.). Eight P levels, ranging from 5 to 640 mg kg-1 P, were applied to pots containing four bean plants of cultivar Carioca in 10 kg of an Oxic Haplustult soil. Attached leaves were counted weekly, abscised leaves were collected every other day, and seeds were harvested at maturity. The number of live leaves increased until 48 days after emergence (DAE) and decreased afterwards, irrespective of applied P levels. At lower applied P levels, the initial increase and the final decrease of leaf number was weak, whereas at higher applied P levels the leaf number increased intensively at the beginning of the growth cycle and decreased strongly after 48 DAE. Dry matter and P accumulated in senesced leaves increased as soil P levels increased until 61 DAE, but differences between P treatments narrowed thereafter. The greatest amounts of dry mass and P deposited by senesced leaves were observed at 48-54 DAE for high P levels, at 62-68 DAE for intermediate P levels and at 69-76 DAE for low P levels. These results indicate that soil P supply did not affect the stage of maximal leaf number and the beginning of leaf senescence of common bean plants, but the stage of greatest deposition of senesced leaves occurred earlier in the growth cycle as the soil P supply was raised.


2017 ◽  
Vol 109 (2) ◽  
pp. 281
Author(s):  
Hamidreza Miri ◽  
Maryam Sadeghi ◽  
Abdolreza Jafari ◽  
Mohammad Mehdi Rahimi

<p>In order to evaluate the effect of CO<sub>2</sub> elevation and UV radiation on growth responses of zinnia, petunia, coxcomb, and marigold, a study was conducted in 2015 at Arsanjan Islamic Azad University, Iran. The experimental design was factorial arranged in completely randomized design with three replications. Treatments were included four ornamental species (zinnia, petunia, coxcomb, and marigold), CO<sub>2</sub> concentration at two levels (350 and 700 ppm), and UV radiation at two levels (with and without UV radiation). Results showed that elevating of CO<sub>2</sub> concentration from 350 ppm to 700 ppm increased morphological and physiological characters of C<sub>3</sub> plants, especially marigold. Meanwhile, increasing CO<sub>2</sub> concentration from 350 ppm to 700 ppm, decreased effects of UV damage on plants’ morphological and physiological characters. The highest leaf number, shoot dry mass, plant height and water use efficiency of C<sub>4</sub> plant (coxcomb flower) were observed at 350 ppm of CO<sub>2</sub> concentration without UV radiation while, the highest leaf number, shoot dry mass and leaf pigments of C<sub>3</sub> plants (zinnia, petunia, and marigold flower) were obtained at 700 ppm of CO<sub>2</sub> concentration without UV radiation. The results showed that the activity of catalase and peroxidase enzymes under UV radiation was increased in all of plants. Overall, it is concluded that, the recognition of plants resistant to UV radiation and high levels of CO<sub>2</sub> concentration in the future may be better for environmental production and distribution as ornamental plants in town landscapes, where ecophysiological traits should be considered.</p>


2016 ◽  
Vol 77 (2) ◽  
pp. 260-266 ◽  
Author(s):  
B. Bender ◽  
E. S. Capellesso ◽  
M. E. Lottici ◽  
J. Sentkovski ◽  
A. A. Mielniczki-Pereira ◽  
...  

Abstract Flood events in riparian forests of southern Brazil, can be characterized as unpredictable and of low magnitude with an average duration of less than 15 days. Inga marginata is an evergreen tree which grows in Southeast South America on a wide range of environments, including riparian forests. In this paper, the interactive effects of the light environment and soil flooding on morphological parameters of I. marginata were examined. Seedlings were acclimated in two contrasting light conditions: sun or shade for 30 days. Sun and shade plants were subjected to soil flooding for two periods; five or 15 days. After 5 days, the interaction between flooding and light did not affect growth, chlorophyll content and dry mass or the root-shoot ratio. After 15 days, flooded plants from the sunny treatment had a lower shoot dry mass compared to control sun plants and flooded plants from the shaded treatment. Moreover, the higher dry mass observed for shade plants compared to sun plants, following flooding, can also be directly associated with a higher content of soluble sugars. Shade plants of I. marginata showed a greater acclimation to soil waterlogging. This acclimation appears to be associated with a larger accumulation of soluble sugars compared to non-flooded plants. The responses observed on the shade plants appear to be decisive to indicate the use of I. marginata in degraded areas.


2019 ◽  
Vol 70 (12) ◽  
pp. 1080 ◽  
Author(s):  
Graeme A. Sandral ◽  
Andrew Price ◽  
Shane M. Hildebrand ◽  
Christopher G. Fuller ◽  
Rebecca E. Haling ◽  
...  

In recent decades several pasture legumes have been available in southern Australia as potential alternatives to the most widely used annual pasture legume Trifolium subterraneum. Little is known about their soil phosphorus (P) requirements, but controlled environment experiments indicate that at least some may differ in their P fertiliser requirements. In this study, pasture legume varieties, including T. subterraneum as the reference species, were grown at up to four sites in any one year over a 3-year period (in total, seven site × year experiments) to measure herbage growth responses in spring to increased soil P availability. A critical soil test P concentration (corresponding to 95% maximum yield) was estimated for 15 legumes and two pasture grasses. The critical soil P requirements of most of the legumes did not differ consistently from that of T. subterraneum, indicating their soil fertility management should follow the current soil test P guidelines for temperate Australian pastures. However, the critical P requirement of Medicago sativa was higher than that of T. subterraneum, but remains ill-defined because extractable soil P concentrations in these experiments were often not high enough to permit a critical P estimate. Three forage crop legumes (Trifolium incarnatum, Trifolium purpureum, Trifolium vesiculosum) and two pasture legumes (Ornithopus compressus, Ornithopus sativus) had lower critical soil test P concentrations. It may be feasible to manage pastures based on these species to a lower soil test P benchmark without compromising yield.


2020 ◽  
Vol 9 (9) ◽  
pp. e506997645
Author(s):  
Renan Gonçalves da Silva ◽  
Jóice Oliveira Leite Silva ◽  
Sonia Marli Zingaretti

This article aims was to compare two sugarcane genotypes under elevated atmospheric carbon dioxide (CO2) concentration and soil water deficit, through an approach based on statistical analysis of plant growth multiple characteristics. For that, Pearson's correlation, dissimilarity and principal components (PC) analysis were performed, of some parameters such as stem length (culm) and roots length, number of leaves, dry mass of plant tissues, among other characteristics. Biometric attributes have a positive and significant correlation with each other. However, the dry mass values ​​have a negative correlation with the other parameters, meaning, therefore, there is a growth reduction as there is also a decrease in plants water conditions subjected to stress. Based on the dissimilarity and PC analysis, observed that genotypes genetically diverge and the imposed environmental condition influences growth responses. This preliminary study is an indication that this approach is essential for understanding the variations between the sugarcane genotypes responses. In addition, is evident (due to divergence) that analyses about the physiological and molecular responses of these genotypes in this environmental condition will contribute to the identification of regulated biological processes and possible tolerance mechanisms.


2007 ◽  
Vol 34 (1) ◽  
pp. 72 ◽  
Author(s):  
Oula Ghannoum ◽  
Jann P. Conroy

This study compared the growth and photosynthetic responses of one C3 (Panicum laxum L.) and two C4 grasses (Panicum coloratum L. and Cenchrus ciliaris L.) to changes in soil phosphorus (P) nutrition. Plants were grown in potted soil amended with six different concentrations of P. One week before harvest, leaf elongation and photosynthetic rates and the contents of carbohydrate, P and inorganic phosphate (Pi) were measured. Five weeks after germination, plants were harvested to estimate biomass accumulation. At each soil P supply, leaf P contents were lower in the C3 (0.6–2.6 mmol P m–2) than in the two C4 grasses (0.8–4.1 mmol P m–2), and Pi constituted ~40–65% of total leaf P. The P deficiency reduced leaf growth, tillering and plant dry mass to a similar extent in all three grasses. In contrast, P deficiency suppressed photosynthetic rates to a greater extent in the C3 (50%) than the C4 grasses (25%). The foliar contents of non-structural carbohydrates were affected only slightly by soil P supply in all three species. Leaf mass per area decreased at low P in the two C4 grasses only, and biomass partitioning changed little with soil P supply. The percentage changes in assimilation rates and plant dry mass were linearly related in the C3 but not the C4 plants. Thus, P deficiency reduced growth in parallel with reductions of photosynthesis in the C3 grass, and independently of photosynthesis in the two C4 grasses. We propose that this may be related to a greater Pi requirement of C4 relative to C3 photosynthesis. Photosynthetic P use efficiency was greater and increased more with P deficiency in the C4 relative to the C3 species. The opposite was observed for whole-plant P-use efficiency. Hence, the greater P-use efficiency of C4 photosynthesis was not transferred to the whole-plant level, mainly as a result of the larger and constant leaf P fraction in the two C4 grasses.


Sign in / Sign up

Export Citation Format

Share Document