scholarly journals Secretome Analysis and In Planta Expression of Salivary Proteins Identify Candidate Effectors from the Brown Planthopper Nilaparvata lugens

2019 ◽  
Vol 32 (2) ◽  
pp. 227-239 ◽  
Author(s):  
Weiwei Rao ◽  
Xiaohong Zheng ◽  
Bingfang Liu ◽  
Qin Guo ◽  
Jianping Guo ◽  
...  

The brown planthopper (BPH), Nilaparvata lugens (Stål), is a phloem sap-feeding insect. During feeding on rice plants, BPH secretes salivary proteins with potential effector functions, which may play a critical role in the plant–insect interactions. However, a limited number of BPH effector proteins have been identified to date. Here, we sequenced the salivary gland transcriptomes of five BPH populations and subsequently established a N. lugens secretome consisting of 1,140 protein-encoding genes. Secretome analysis revealed the presence of both conserved and rapidly evolving salivary proteins. A screen for potential effectors that elicit responses in the plant was performed via the transient expression analysis of 64 BPH salivary proteins in Nicotiana benthamiana leaves and rice protoplasts. The salivary proteins Nl12, Nl16, Nl28, and Nl43 induced cell death, whereas Nl40 induced chlorosis and Nl32 induced a dwarf phenotype in N. benthamiana, indicating effector properties of these proteins. Ectopic expression of the six salivary proteins in N. benthamiana upregulated expression of defense-related genes and callose deposition. Tissue expression analysis showed a higher expression level of the six candidate effectors in salivary glands than in other tissues. Subcellular localization and analysis of the domain required for cell death showed a diverse structure of the six effectors. Nl28, Nl40, and Nl43 are N. lugens specific; in contrast, Nl12, Nl16, and Nl32 are conserved among insects. The Nl40 family has numerous isoforms produced by alternative splicing, exemplifying rapid evolution and expansion of effector proteins in the BPH. Our results suggest a potential large effector repertoire in BPH and a higher level of effector conservation exist in BPH compared with that in plant pathogens.

Rice Science ◽  
2017 ◽  
Vol 24 (3) ◽  
pp. 163-172 ◽  
Author(s):  
Panatda Jannoey ◽  
Duangdao Channei ◽  
Jate Kotcharerk ◽  
Weerathep Pongprasert ◽  
Mika Nomura

2014 ◽  
Author(s):  
Angela Chaparro-Garcia ◽  
Simon Schwizer ◽  
Jan Sklenar ◽  
Kentaro Yoshida ◽  
Jorunn I. B. Bos ◽  
...  

Perception of pathogen associated molecular patterns (PAMPs) by cell surface localized pattern recognition receptors (PPRs), activates plant basal defense responses in a process known as PAMP/PRR–triggered immunity (PTI). In turn, pathogens deploy effector proteins that interfere with different steps in PTI signaling. However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that BAK1/SERK3, a regulatory receptor of several PRRs, contributes to basal immunity against the Irish potato famine pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated defense by binding the E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and suppress INF1 cell death. Here we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3 dependent PTI responses using the plant PRR FLAGELLIN SENSING 2 (FLS2). We found that all tested variants of AVR3a, including AVR3aKI-Y147del, suppress early defense responses triggered by the bacterial flagellin-derived peptide flg22 and reduce internalization of activated FLS2 from the plasma membrane without disturbing its nonactivated localization. Consistent with this effect of AVR3a on FLS2 endocytosis, we discovered that AVR3a associates with the Dynamin-Related Protein DRP2, a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, DRP2 is required for ligand-induced FLS2 internalization but does not affect internalization of the growth receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1). Furthermore, overexpression of DRP2 suppressed accumulation of reactive oxygen species triggered by PAMP treatment. We conclude that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis and signaling. AVR3a is a multifunctional effector that can suppress BAK1/SERK3 mediated immunity through at least two different pathways.


2014 ◽  
Vol 70 (a1) ◽  
pp. C801-C801
Author(s):  
Richard Hughes ◽  
Stuart King ◽  
Abbas Maqbool ◽  
Hazel McLellan ◽  
Tolga Bozkurt ◽  
...  

An estimated 15% of global crop production is lost to pre-harvest disease every year. New ways to manage plant diseases are required. A mechanistic understanding of how plant pathogens re-program their hosts to enable colonisation may provide novel genetic or chemical opportunities to interfere with disease. One notorious plant parasite is the Irish potato famine pathogen Phytophthora infestans. This pathogen remains a considerable threat to potato/tomato crops today as the agent of late blight. Plant pathogens secrete effector proteins outside of and into plant cells to suppress host defences and manipulate cell physiology. Structural studies have provided insights into effector evolution and enabled experiments to probe function [1-3]. Crystal structures of 4 Phytophthora RXLR-type effectors, which are unrelated in primary sequence, revealed similarities in the fold of these proteins. This fold was proposed to act as a stable scaffold that supports diversification of effectors. Further, molecular modelling has enabled mapping of single-site variants responsible for specialisation of a Phytophthora Cystatin-like effector, revealing how effectors can adapt to new hosts after a "host jump". Structural studies describing how RXLR-effectors interact with host targets are lacking. We have used Y2H/co-IP studies to identify host proteins that interact with P. infestans effectors PexRD2 and PexRD54. PexRD2 interacts with MAPKKKe, a component of plant immune signalling pathways, and suppressed cell death activities of this protein. We used the structure of PexRD2 to design mutants that fail to interact with MAPKKKe, and no longer suppress cell-death activities. We found that PexRD54 interacts with potato homologues of the autophagy protein ATG8. We have obtained a crystal structure for PexRD54 in the presence of ATG8. We are now using X-ray scattering to verify the complex structure in solution prior to establishing the role of this interaction during infection.


2010 ◽  
Vol 101 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Z. Yang ◽  
Y. Zhang ◽  
X. Liu ◽  
X. Wang

Two novel full-length P450 cDNAs,CYP6CS1andCYP6CW1, were cloned from the fourth instar nymphs of brown planthopperNilaparvata lugensStål (Hemiptera: Delphacidae) reared on its susceptible rice variety Taichung Native 1 (TN1) plants. The deduced proteins are typical microsomal P450s sharing conserved structural and functional domains with other insect CYP6 members. Temporal expression analysis by northern blot hybridization indicated pre-exposure toN.lugensmoderately resistant rice Minghui 63 (MH63) seedlings caused a time course-dependent induction ofCYP6CS1which peaked after 24 h of treatment; in contrast,CYP6CW1was induced and remained at a constant time course from 0–72 h.CYP6CS1andCYP6CW1are dramatically induced in gut tissues and, slightly upregulated in carcass and fat bodies as revealed in spatial gene expression analysis. Whole mountin situhybridizaion revealed that the two genes are expressed at a basal level in gut tissue and Malpighian tubules in nymphs fed with TN1 rice. After exposure to MH63, the expression ofCYP6CW1was found to be high in the whole gut, including Malpighian tubules. Expression ofCYP6CS1was significantly increased in midgut, and slightly increased in foregut, hindgut and Malpighian tubules. These data suggest a potential role of the two P450s in determining patterns ofN. lugens-rice relationships through allelochemical detoxification.


Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 2092-2101 ◽  
Author(s):  
Xin-Yan Pei ◽  
Yun Dai ◽  
Sarah Tenorio ◽  
Jianghua Lu ◽  
Hisashi Harada ◽  
...  

Abstract The role of Bim in synergistic interactions between UCN-01 and MEK1/2 inhibitors in human multiple myeloma cells was investigated. Exposure of U266 or RPMI8226 cells to UCN-01 resulted in ERK1/2 activation-associated BimEL phosphorylation/down-regulation, events abrogated by MEK1/2 inhibitors. Enforced activation of ERK1/2 by transfection with constitutively active MEK1 diminished the capacity of PD98059 but not PD184352 to block UCN-01–mediated BimEL phosphorylation and to potentiate apoptosis. Cotreatment with MEK1/2 inhibitors increased the association of BimEL with both Bcl-2 and Bcl-xL in UCN-01–treated cells, leading to Bax/Bak conformational change and Bax mitochondrial translocation. Down-regulation of BimEL by shRNA substantially diminished UCN-01/MEK inhibitor-mediated Bax/Bak activation and apoptosis. Furthermore, transfection of cells with S65A Bim, a mutant resistant to UCN-01–mediated phosphorylation, significantly sensitized cells to UCN-01 lethality. Conversely, ectopic expression of either Bcl-2 or Bcl-xL did not alter UCN-01/MEK1/2 inhibitor-mediated modifications in BimEL phosphorylation but largely prevented cell death. Finally, IL-6 or IGF-1 failed to prevent MEK1/2 inhibitors from blocking UCN-01–induced BimEL phosphorylation/degradation or cell death. Collectively, these findings argue that UCN-01–mediated ERK1/2 activation leads to BimEL phosphorylation/inactivation, resulting in cytoprotection, and that interference with these events by MEK1/2 inhibitors plays a critical role in synergistic induction of apoptosis by these agents.


2019 ◽  
Vol 32 (8) ◽  
pp. 986-1000 ◽  
Author(s):  
Xiao-Ren Chen ◽  
Ye Zhang ◽  
Hai-Yang Li ◽  
Zi-Hui Zhang ◽  
Gui-Lin Sheng ◽  
...  

Plant pathogens employ diverse secreted effector proteins to manipulate host physiology and defense in order to foster diseases. The destructive Phytophthora pathogens encode hundreds of cytoplasmic effectors, which are believed to function inside the plant cells. Many of these cytoplasmic effectors contain the conserved N-terminal RXLR motif. Understanding the virulence function of RXLR effectors will provide important knowledge of Phytophthora pathogenesis. Here, we report the characterization of RXLR effector PcAvh1 from the broad–host range pathogen Phytophthora capsici. Only expressed during infection, PcAvh1 is quickly induced at the early infection stages. CRISPR/Cas9-knockout of PcAvh1 in P. capsici severely impairs virulence while overexpression enhances disease development in Nicotiana benthamiana and bell pepper, demonstrating that PcAvh1 is an essential virulence factor. Ectopic expression of PcAvh1 induces cell death in N. benthamiana, tomato, and bell pepper. Using yeast two-hybrid screening, we found that PcAvh1 interacts with the scaffolding subunit of the protein phosphatase 2A (PP2Aa) in plant cells. Virus-induced gene silencing of PP2Aa in N. benthamiana attenuates resistance to P. capsici and results in dwarfism, suggesting that PP2Aa regulates plant immunity and growth. Collectively, these results suggest that PcAvh1 contributes to P. capsici infection, probably through its interaction with host PP2Aa.


1997 ◽  
Vol 136 (1) ◽  
pp. 215-227 ◽  
Author(s):  
Nicola J. McCarthy ◽  
Moira K.B. Whyte ◽  
Christopher S. Gilbert ◽  
Gerard I. Evan

There is increasing evidence for a central role in mammalian apoptosis of the interleukin-1β– converting enzyme (ICE) family of cysteine proteases, homologues of the product of the nematode “death” gene, ced-3. Ced-3 is thought to act as an executor rather than a regulator of programmed cell death in the nematode. However, it is not known whether mammalian ICE-related proteases (IRPs) are involved in the execution or the regulation of mammalian apoptosis. Moreover, an absolute requirement for one or more IRPs for mammalian apoptosis has yet to be established. We have used two cell-permeable inhibitors of IRPs, Z-Val-Ala-Asp.fluoromethylketone (ZVAD.fmk) and t-butoxy carbonyl-Asp.fluoromethylketone (BD.fmk), to demonstrate a critical role for IRPs in mammalian apoptosis induced by several disparate mechanisms (deregulated oncogene expression, ectopic expression of the Bcl-2 relative Bak, and DNA damage–induced cell death). In all instances, ZVAD.fmk and BD.fmk treatment inhibits characteristic biochemical and morphological events associated with apoptosis, including cleavage of nuclear lamins and poly-(ADP-ribose) polymerase, chromatin condensation and nucleosome laddering, and external display of phosphatidylserine. However, neither ZVAD.fmk nor BD.fmk inhibits the onset of apoptosis, as characterized by the onset of surface blebbing; rather, both act to delay completion of the program once initiated. In complete contrast, IGF-I and Bcl-2 delay the onset of apoptosis but have no effect on the kinetics of the program once initiated. Our data indicate that IRPs constitute part of the execution machinery of mammalian apoptosis induced by deregulated oncogenes, DNA damage, or Bak but that they act after the point at which cells become committed to apoptosis or can be rescued by survival factors. Moreover, all such blocked cells have lost proliferative potential and all eventually die by a process involving cytoplasmic blebbing.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jianmei Fu ◽  
Yu Shi ◽  
Lu Wang ◽  
Hao Zhang ◽  
Jing Li ◽  
...  

The small brown planthopper (Laodelphax striatellus; SBPH) is a piercing-sucking insect that secretes salivary proteins into its plant host during feeding. However, the mechanisms by which these salivary proteins regulate plant defense responses remain poorly understood. Here, we identified the disulfide isomerase (LsPDI1) in the SBPH salivary proteome. LsPDI1 was highly expressed in the SBPH salivary glands and secreted into rice plants during feeding. Transient in planta LsPDI1 expression in the absence of signal peptide induced reactive oxygen species (ROS) burst, cell death, callose deposition, and jasmonic acid (JA) signaling pathway. Deletion mutant analysis revealed that either the a-b-b’ or the b-b’-a’ domains in LsPDI1 are required to induce cell death in plants. LsPDI1 and its orthologs were highly conserved among various planthopper species and strongly induced ROS burst and cell death in plants. Transient in Nicotiana benthamiana LsPDI1 expression impaired the performance of Spodoptera frugiperda and Myzus persicae on host plants. Hence, LsPDI1 is an important salivary elicitor that enhances plant resistance to insects by inducing the calcium, ROS, and JA signaling pathways. The findings of this study provide novel insights into the molecular mechanisms underlying plant-insect interactions.


Sign in / Sign up

Export Citation Format

Share Document