scholarly journals Effects of Atmospheric CO2 Level on the Metabolic Response of Resistant and Susceptible Wheat to Fusarium graminearum Infection

2019 ◽  
Vol 32 (4) ◽  
pp. 379-391 ◽  
Author(s):  
Miroslava Cuperlovic-Culf ◽  
Martha M. Vaughan ◽  
Karl Vermillion ◽  
Anu Surendra ◽  
Jennifer Teresi ◽  
...  

Rising atmospheric CO2 concentrations and associated climate changes are thought to have contributed to the steady increase of Fusarium head blight (FHB) on wheat. However, our understanding of precisely how elevated CO2 influences the defense response of wheat against Fusarium graminearum remains limited. In this study, we evaluated the metabolic profiles of susceptible (Norm) and moderately resistant (Alsen) spring wheat in response to whole-head inoculation with two deoxynivalenol (DON)-producing F. graminearum isolates (DON+), isolates 9F1 and Gz3639, and a DON-deficient (DON−) isolate (Gzt40) at ambient (400 ppm) and elevated (800 ppm) CO2 concentrations. The effects of elevated CO2 were dependent on both the Fusarium strain and the wheat variety, but metabolic differences in the host can explain the observed changes in F. graminearum biomass and DON accumulation. The complexity of abiotic and biotic stress interactions makes it difficult to determine if the observed metabolic changes in wheat are a result of CO2-induced changes in the host, the pathogen, or a combination of both. However, the effects of elevated CO2 were not dependent on DON production. Finally, we identified several metabolic biomarkers for wheat that can reliably predict FHB resistance or susceptibility, even as atmospheric CO2 levels rise.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
François Fauteux ◽  
Yunli Wang ◽  
Hélène Rocheleau ◽  
Ziying Liu ◽  
Youlian Pan ◽  
...  

Abstract Background Fusarium head blight (FHB) is a major disease of cereal crops, caused by the fungal pathogen Fusarium graminearum and related species. Breeding wheat for FHB resistance contributes to increase yields and grain quality and to reduce the use of fungicides. The identification of genes and markers for FHB resistance in different wheat genotypes has nevertheless proven challenging. Results In this study, early infection by F. graminearum was analyzed in a doubled haploid population derived from the cross of the moderately resistant wheat genotypes Wuhan 1 and Nyubai. Three quantitative trait loci (QTL) were identified: 1AL was associated with lower deoxynivalenol content, and 4BS and 5A were associated with reduced F. graminearum infection at 2 days post inoculation. Early resistance alleles were inherited from Wuhan 1 for QTL 1AL and 4BS and inherited from Nyubai for the 5A QTL. Cis and trans expression QTL (eQTL) were identified using RNA-seq data from infected head samples. Hotspots for trans eQTL were identified in the vicinity of the 1AL and 4BS QTL peaks. Among differentially expressed genes with cis eQTL within the QTL support intervals, nine genes had higher expression associated with FHB early resistance, and four genes had higher expression associated with FHB early susceptibility. Conclusions Our analysis of genotype and gene expression data of wheat infected by F. graminearum identified three QTL associated with FHB early resistance, and linked genes with eQTL and differential expression patterns to those QTL. These findings may have applications in breeding wheat for early resistance to FHB.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1458-1464 ◽  
Author(s):  
Melissa D. Keller ◽  
Wade E. Thomason ◽  
David G. Schmale

Corn residue is a significant source of inoculum for epidemics of Fusarium head blight (FHB) in wheat and barley, but little is known about the influence of different amounts of corn residue on FHB. We monitored the spread of a released clone of Gibberella zeae (Fusarium graminearum), causal agent of FHB, from small 0.84-m-diameter research plots containing 45, 200, or 410 g of infested corn stalk pieces in winter wheat and barley fields in Virginia over 3 years (2008 to 2010). The fungus was recaptured through the collection of wheat and barley spikes at 0 and 3 m from the source and the released clone was identified in heterogeneous background populations using amplified fragment length polymorphisms. Results showed a slightly greater intensity of recovery of the clone at a greater distance when more infested residue was present. Plots containing larger amounts of inoculum (410 g) generally resulted in a smaller decline of recovery of the clone at 3 m from the source, indicating a greater spread from the larger inoculum source. The clone was also recovered at distances ≥18 m from inoculum sources. Larger amounts of corn residue generally had less influence on clone recovery in plots containing a moderately resistant wheat cultivar than those containing a susceptible wheat cultivar.


2017 ◽  
Author(s):  
C.P. Nicolli ◽  
F.J. Machado ◽  
P. Spolti ◽  
E.M. Del Ponte

AbstractFusarium graminearum of the 15-acetyl(A)deoxynivalenol(D0N) chemotype is the main cause of Fusarium head blight (FHB) of wheat in south of Brazil. However, 3-ADON and nivalenol(NIV) chemotypes have been found in other members of the species complex causing FHB in wheat. To improve our understanding of the pathogen ecology, we assessed a range of fitness-related traits in a sample of 30 strains representatives of 15-ADON (F. graminearum), 3-ADON (F. cortaderiae and F. austroamericanum) and NIV (F. meridionale and F. cortaderiae). These included: perithecia formation on three cereal-based substrates, mycelial growth at two suboptimal temperatures, sporulation and germination, pathogenicity towards a susceptible and a moderately resistant cultivar and sensitivity to tebuconazole. The most important trait favoring F. graminearum was its 2x higher sexual fertility (> 40% PPI = perithecia production index) than the other species (< 30% PPI); PPI varied among substrates (maize > rice > wheat). In addition, sensitivity to tebuconazole appeared lower in F. graminearum which had the only strain with EC50 > 1 ppm. In the pathogenicity assays, the DON-producers were generally more aggressive (1.5 to 2x higher final severity) towards the two cultivars, with 3-ADON or 15-ADON leading to higher area under the severity curve than the NIV strains in the susceptible and moderately resistant cv., respectively. There was significant variation among strains of a same species with regards asexual fertility (mycelial growth, macroconidia production and germination), which suggest a strain-rather than a species-specific differences. These results contribute new knowledge to improve our understanding of the pathogen-related traits that may explain the dominance of certain members of the species complex in specific wheat agroecosystems.


2020 ◽  
Vol 110 (4) ◽  
pp. 916-926
Author(s):  
Martha M. Vaughan ◽  
Todd J. Ward ◽  
Susan P. McCormick ◽  
Nathane Orwig ◽  
William T. Hay ◽  
...  

Fusarium graminearum is a causal agent of Fusarium head blight (FHB), a disease that reduces yield and quality of cereal crops and contaminates grain with mycotoxins that pose health risks to humans and livestock. Interpopulation antagonistic interactions between isolates that produce different trichothecene mycotoxins can reduce FHB in wheat, but it is not known if interactions between isolates with a shared population identity that produce the same trichothecenes have a similar effect. Using isolates from the predominant F. graminearum populations in North America (NA1 and NA2), we examined intrapopulation interactions by comparing growth, disease progression, and toxin production of individual isolates with multi-isolate mixes. In vitro, mycelial growth was significantly greater when most NA1 and NA2 isolates were cultured individually versus when cultured as a mixture of isolates from the same population. In susceptible wheat Norm, FHB generally progressed faster in heads inoculated with an individual isolate versus a multi-isolate mixture, but the antagonistic effect of intrapopulation interactions was more pronounced for NA1 than NA2 isolates. By contrast, in moderately resistant wheat Alsen, mixtures of isolates from either population caused obvious reductions in FHB development. Mycotoxin contamination was not consistently affected by intrapopulation interactions and varied depending on the interacting isolates from either population. Our results indicate that antagonistic intrapopulation interactions can influence FHB in controlled environmental conditions. Understanding if the regional composition of pathogen populations similarly influences FHB in the field could improve disease forecasting and management practices.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2536-2540 ◽  
Author(s):  
Shengming Liu ◽  
Liuyuan Fu ◽  
Shuan Wang ◽  
Jinpeng Chen ◽  
Jia Jiang ◽  
...  

Fusarium head blight, also called scab, is caused by Fusarium graminearum and is one of the most important destructive diseases of wheat. The frequency of carbendazim resistance in 1,132 isolates of F. graminearum recovered from fields in different regions of Henan Province in 2016, 2017, and 2018 was determined. A total of 31 F. graminearum isolates resistant to carbendazim were detected, including 30 moderately resistant isolates and one highly resistant isolate. The frequency of resistance of F. graminearum isolates to carbendazim was 2.7%. The range of effective concentration (EC50) values of 1,101 sensitive isolates and 30 moderately resistant isolates was 0.08 to 0.98 μg ml−1 and 2.73 to 13.28 μg ml−1, respectively. The mean ± SD EC50 value was 0.55 ± 0.13 μg ml−1 and 5.61 ± 2.58 μg ml−1, respectively. The EC50 value of the highly resistant isolate was 21.12 μg ml−1. Point mutation types of the carbendazim-resistant isolates were characterized by cloning the β2-tubulin gene of 31 resistant isolates. Three point mutation types at amino acids F167Y, E198Q, and E198L in the β2-tubulin gene of resistant isolates were identified. Among 31 resistant isolates, the frequency of point mutation types in F167Y, E198Q, and E198L of the β2-tubulin gene was 71.0, 25.8, and 3.2%, respectively. The data indicate that F. graminearum has developed resistance to carbendazim in Henan Province, and single point mutations at amino acid F167Y were the predominant type of mutation detected.


2014 ◽  
Vol 104 (5) ◽  
pp. 513-519 ◽  
Author(s):  
Pierri Spolti ◽  
Emerson M. Del Ponte ◽  
Jaime A. Cummings ◽  
Yanhong Dong ◽  
Gary C. Bergstrom

In all, 50 isolates of Fusarium graminearum from wheat spikes in New York, including 25 isolates each of the 15-acetyl-deoxynivalenol (15-ADON) and 3-ADON genotype, were tested to determine whether 3-ADON isolates are more fit for saprophytic survival and pathogenicity on wheat spikes than are 15-ADON isolates. The isolates were characterized and compared for 14 different attributes of saprophytic fitness and pathogenic fitness on a susceptible wheat variety. Isolates of the two genotypes could not be differentiated for most of these traits. Three principle components—ascospore production on corn stalks, total trichothecene amount in wheat kernels, and incidence of diseased spikelets up from the point of inoculation—accounted for 29.4, 18.9, and 10.8% of the variation among the isolates, respectively. A bootstrapping procedure grouped the isolates into two distinct groups, with 27 and 23 isolates each, with isolates from both genotypes represented in similar proportions (15-ADON/3-ADON, n = 14/13 and 11/12). Within the contemporary population of F. graminearum causing wheat head blight in New York, isolates with a 3-ADON genotype did not possess any detectable advantage over isolates with a 15-ADON genotype in saprophytic fitness or in pathogenic fitness on a susceptible wheat cultivar.


Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 263 ◽  
Author(s):  
Chami Amarasinghe ◽  
Barbara Sharanowski ◽  
W.G. Dilantha Fernando

Fusarium head blight (FHB), caused principally by the species belonging to the Fusarium graminearum species complex (FGSC), is an important disease in wheat, barley, and other small grain crops worldwide. Grain infected with species in the FGSC may be contaminated with trichothecene mycotoxins such as deoxynivalenol (DON) and nivalenol (NIV). In this study, we characterized the phylogenetic relationships, chemotype diversity, phenotypic characters, and aggressiveness of 150 strains in FGSC collected from eight different countries. Phylogenetic analysis based on portions of translation elongation factor 1-α (EF-1α) gene from 150 strains revealed six species in the FGSC, F. graminearum s.s, F. asiaticum, F. meridionale, F. cortaderiae, F. boothii, and F. austroamericanum. In this collection, 50% of the strains were 15-acetyldeoxynivalenol (15-ADON), 35% were 3-acetyldeoxynivalenol (3-ADON) and 15% were NIV. Evaluation of strains on moderately resistant (MR) wheat cultivar Carberry indicated that there is no significant difference among the species for FHB disease severity (DS), fusarium damaged kernel percentage (FDK%) and DON production. However, significant differences were observed among the chemotypes. Results showed significantly higher FHB DS, FDK%, DON production, growth rates, and macroconidia production for the 3-ADON strains than the 15-ADON and NIV strains. In addition, significant differences for FHB response variables were observed among the strains from different countries. Our results demonstrate that type and amount of trichothecene produced by a strain play a key role in determining the level of aggressiveness of that particular strain, regardless of the species.


2019 ◽  
Vol 99 (2) ◽  
pp. 289-298
Author(s):  
S. Kumar ◽  
S.L. Fox ◽  
J. Mitchell Fetch ◽  
D. Green ◽  
T. Fetch ◽  
...  

AAC Warman (BW1025) is a high-yielding Canada Western Red Spring (CWRS) wheat adapted to production in western Canada. AAC Warman was 3% higher yielding than Unity, the highest yielding check in the Central Bread Wheat Cooperative registration trials (2014–2016). Within the same test, AAC Warman was 11% higher yielding than Carberry, a popular CWRS wheat variety across the Canadian prairies. AAC Warman matured 3 d earlier than Carberry and a day later than Unity, the earliest maturing check. AAC Warman was shorter than Unity and had better stem strength compared with Unity; however, the lodging score for AAC Warman was higher than the mean of the checks. Over 3 yr of testing (2014–2016), the test weight and thousand-kernel weight of AAC Warman was similar to Carberry. The grain protein content of AAC Warman was 0.3% lower than both Unity and Carberry. AAC Warman was rated moderately resistant to Fusarium head blight (Fusarium graminearum Schwabe) and loose smut [Ustilago tritici (Pers.) Rostr.], resistant to leaf rust (Puccinia triticina Erikss.) and stem rust (Puccinia graminis Pers. f. sp. tritici Erikss. & E. Henn), moderately susceptible to stripe rust (Puccinia striiformis Westend.) and common bunt [Tilletia caries (DC.) Tul. & C. Tul.], and intermediately resistant to leaf spot complex. AAC Warman was resistant to orange wheat blossom midge (Sitodiplosis mosellana Géhin). Based on its milling and baking performance over 3 yr (2014–2016), as evaluated by the Grain Research Laboratory, Canadian Grain Commission, AAC Warman was registered under the CWRS market class.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4752
Author(s):  
Sara Francesconi ◽  
Barbara Steiner ◽  
Hermann Buerstmayr ◽  
Marc Lemmens ◽  
Michael Sulyok ◽  
...  

Fusarium head blight (FHB) is a devastating disease for cereals. FHB is managed by fungicides at anthesis, but their efficacy is variable. Conventional fungicides accumulate in the soil and are dangerous for animal and human health. This study assayed the antifungal ability of chitosan hydrochloride against Fusarium graminearum. Chitosan reduced F. graminearum growth and downregulated the transcript of the major genes involved in the cell growth, respiration, virulence, and trichothecenes biosynthesis. Chitosan promoted the germination rate, the root and coleoptile development, and the nitrogen balance index in two durum wheat genotypes, Marco Aurelio (FHB-susceptible) and DBC480 (FHB-resistant). Chitosan reduced FHB severity when applied on spikes or on the flag leaves. FHB severity in DBC480 was of 6% at 21 dpi after chitosan treatments compared to F. graminearum inoculated control (20%). The elicitor-like property of chitosan was confirmed by the up-regulation of TaPAL, TaPR1 and TaPR2 (around 3-fold). Chitosan decreased the fungal spread and mycotoxins accumulation. This study demonstrated that the non-toxic chitosan is a powerful molecule with the potential to replace the conventional fungicides. The combination of a moderately resistant genotype (DBC480) with a sustainable compound (chitosan) will open new frontiers for the reduction of conventional compounds in agriculture.


Plant Disease ◽  
2018 ◽  
Vol 102 (7) ◽  
pp. 1341-1347 ◽  
Author(s):  
Camila Primieri Nicolli ◽  
Franklin Jackson Machado ◽  
Piérri Spolti ◽  
Emerson M. Del Ponte

Fusarium graminearum of the 15-acetyl-deoxynivalenol (15-ADON) chemotype is the main cause of Fusarium head blight (FHB) of wheat in southern Brazil. However, 3-ADON and nivalenol (NIV) chemotypes have been found in other members of the species complex causing FHB in wheat. To improve our understanding of the pathogen biology and ecology, we assessed a range of fitness-related traits in a sample of 30 strains representatives of 15-ADON (F. graminearum), 3-ADON (F. cortaderiae and F. austroamericanum), and NIV (F. meridionale and F. cortaderiae). These included perithecia formation on three cereal-based substrates, mycelial growth at two suboptimal temperatures, sporulation and germination, pathogenicity toward a susceptible and a moderately resistant cultivar, and sensitivity to tebuconazole. The most important trait favoring F. graminearum was a two times higher sexual fertility (>40% perithecial production index [PPI]) than the other species (<30% PPI); PPI varied among substrates (maize > rice > wheat). In addition, sensitivity to tebuconazole appeared lower in F. graminearum, which had the only strain with effective fungicide concentration to reduce 50% of mycelial growth >1 ppm. In the pathogenicity assays, the deoxynivalenol producers were generally more aggressive (1.5 to 2× higher final severity) toward the two cultivars, with 3-ADON or 15-ADON leading to higher area under the severity curve than the NIV strains in the susceptible and moderately resistant cultivars, respectively. There was significant variation among strains of the same species with regards asexual fertility (mycelial growth, macroconidia production, and germination), which suggested a strain- rather than a species-specific difference. These results contribute new knowledge to improve our understanding of the pathogen-related traits that may explain the dominance of certain members of the species complex in specific wheat agroecosystems.


Sign in / Sign up

Export Citation Format

Share Document