scholarly journals PvPGIP2 Accumulation in Specific Floral Tissues But Not in the Endosperm Limits Fusarium graminearum Infection in Wheat

2016 ◽  
Vol 29 (10) ◽  
pp. 815-821 ◽  
Author(s):  
Silvio Tundo ◽  
Michela Janni ◽  
Ilaria Moscetti ◽  
Giulia Mandalà ◽  
Daniel Savatin ◽  
...  

Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most destructive fungal diseases of wheat worldwide. The pathogen infects the spike at flowering time and causes severe yield losses, deterioration of grain quality, and accumulation of mycotoxins. The understanding of the precise means of pathogen entry and colonization of floral tissue is crucial to providing effective protection against FHB. Polygalacturonase (PG) inhibiting proteins (PGIPs) are cell-wall proteins that inhibit the activity of PGs, a class of pectin-depolymerizing enzymes secreted by microbial pathogens, including Fusarium spp. The constitutive expression of a bean PGIP (PvPGIP2) limits FHB symptoms and reduces mycotoxin accumulation in wheat grain. To better understand which spike tissues play major roles in limiting F. graminearum infection, we explored the use of PvPGIP2 to defend specific spike tissues. We show here that the simultaneous expression of PvPGIP2 in lemma, palea, rachis, and anthers reduced FHB symptoms caused by F. graminearum compared with symptoms in infected nontransgenic plants. However, the expression of PvPGIP2 only in the endosperm did not affect FHB symptom development, indicating that once the pathogen has reached the endosperm, inhibition of the pathogen’s PG activity is not effective in preventing its further spread.

Author(s):  
Rozalia KADAR ◽  
Amin Said SARDAR Amin Said SARDAR

Fusarium  Head Blight (FHB), caused by Fusarium spp., has become one of the most destructive diseases in the world’s wheat growing areas, especially in humid and semihumid regions. More precise data relating the effects of FHB on yield have been obtained using inoculated trials. The situation is totally changed by inoculation with Fusarium. Because this disease affected wheat in flowering stage, number of grain/spike is strongly diminished. It can be observed the behavior of Turda 95 and Dumbrava varieties created at ARDS Turda which lose less number of grain than other cultivars.


1997 ◽  
Vol 25 (3) ◽  
pp. 763-764
Author(s):  
G. V. Kalko ◽  
L. A. Nasarovskaya ◽  
I. I. Novikova ◽  
I. V. Boikova ◽  
V. G. Ivashenko

Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1076-1086
Author(s):  
Mohamed Hafez ◽  
Ahmed Abdelmagid ◽  
Lorne R. Adam ◽  
Fouad Daayf

Fusarium graminearum is a toxigenic plant pathogen that causes Fusarium head blight (FHB) disease on cereal crops. It has recently shown to have cross-pathogenicity on noncereals (i.e., Fusarium root rot [FRR] on soybean) in Canada and elsewhere. Specific detection and differentiation of this potent toxigenic, trichothecene-producing pathogen among other closely related species is extremely important for disease control and mycotoxin monitoring. Here, we designed a PCR restriction fragment length polymorphism protocol based on the DNA sequence of the translational elongation factor 1α (TEF1α) gene. A unique restriction site to the enzyme HpaII is only found in F. graminearum sensu stricto strains among different Fusarium strains in the F. graminearum species complex (FGSC) and other Fusarium spp. associated with FHB in cereals and FRR in soybean. Partial amplification of the TEF1α gene with newly designed primers mh1/mh2 generated a 459-bp PCR fragment. Restriction digestion of the generated fragments with the HpaII enzyme generated a unique restriction pattern that can rapidly and accurately differentiate F. graminearum sensu stricto among all other Fusarium spp. A primer pair (FgssF/FgssR) specific to F. graminearum sensu stricto also was designed and can distinguish F. graminearum sensu stricto from all other Fusarium spp. in the FGSC and other closely related Fusarium spp. involved in FHB and FRR. This finding will be very useful for the specific detection of F. graminearum sensu stricto for diagnostic purposes as well as for the accurate detection of this pathogen in breeding and other research purposes.


2013 ◽  
Vol 26 (12) ◽  
pp. 1464-1472 ◽  
Author(s):  
Ilaria Moscetti ◽  
Silvio Tundo ◽  
Michela Janni ◽  
Luca Sella ◽  
Katia Gazzetti ◽  
...  

Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.


2015 ◽  
Vol 28 (8) ◽  
pp. 943-953 ◽  
Author(s):  
Ragiba Makandar ◽  
Vamsi J. Nalam ◽  
Zulkarnain Chowdhury ◽  
Sujon Sarowar ◽  
Guy Klossner ◽  
...  

Fusarium graminearum causes Fusarium head blight (FHB) disease in wheat and other cereals. F. graminearum also causes disease in Arabidopsis thaliana. In both Arabidopsis and wheat, F. graminearum infection is limited by salicylic acid (SA) signaling. Here, we show that, in Arabidopsis, the defense regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) and its interacting partners, PAD4 (PHYTOALEXIN-DEFICIENT4) and SAG101 (SENESCENCE-ASSOCIATED GENE101), promote SA accumulation to curtail F. graminearum infection. Characterization of plants expressing the PAD4 noninteracting eds1L262P indicated that interaction between EDS1 and PAD4 is critical for limiting F. graminearum infection. A conserved serine in the predicted acyl hydrolase catalytic triad of PAD4, which is not required for defense against bacterial and oomycete pathogens, is necessary for limiting F. graminearum infection. These results suggest a molecular configuration of PAD4 in Arabidopsis defense against F. graminearum that is different from its defense contribution against other pathogens. We further show that constitutive expression of Arabidopsis PAD4 can enhance FHB resistance in Arabidopsis and wheat. Taken together with previous studies of wheat and Arabidopsis expressing salicylate hydroxylase or the SA-response regulator NPR1 (NON-EXPRESSER OF PR GENES1), our results show that exploring fundamental processes in a model plant provides important leads to manipulating crops for improved disease resistance.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
Gaetano Bentivenga ◽  
Alfio Spina ◽  
Karim Ammar ◽  
Maria Allegra ◽  
Santa Olga Cacciola

In 2009, a set of 35 cultivars of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) of Italian origin was screened for fusarium head blight (FHB) susceptibility at CIMMYT (Mexico) and in the 2019–20 cropping season, 16 of these cultivars, which had been included in the Italian National Plant Variety Register, were tested again in southern and northern Italy. Wheat cultivars were artificially inoculated during anthesis with a conidial suspension of Fusarium graminearum sensu lato using a standard spray inoculation method. Inoculum was a mixture of mono-conidial isolates sourced in the same areas where the trials were performed. Isolates had been characterized on the basis of morphological characteristics and by DNA PCR amplification using a specific primer set and then selected for their virulence and ability to produce mycotoxins. The susceptibility to FHB was rated on the basis of the disease severity, disease incidence and FHB index. Almost all of the tested cultivars were susceptible or very susceptible to FHB with the only exception of “Duprì”, “Tiziana” and “Dylan” which proved to be moderately susceptible. The susceptibility to FHB was inversely correlated with the plant height and flowering biology, the tall and the late heading cultivars being less susceptible.


2008 ◽  
Vol 88 (6) ◽  
pp. 1087-1089 ◽  
Author(s):  
Stephen N Wegulo ◽  
Floyd E Dowell

Fusarium head blight (scab) of wheat, caused by Fusarium graminearum, often results in shriveled and/or discolored kernels, which are referred to as Fusarium-damaged kernels (FDK). FDK is a major grain grading factor and therefore is routinely determined for purposes of quality assurance. Measurement of FDK is usually done visually. Visual sorting can be laborious and is subject to inconsistencies resulting from variability in intra-rater repeatability and/or inter-rater reliability. The ability of a single-kernel near-infrared (SKNIR) system to detect FDK was evaluated by comparing FDK sorted by the system to FDK sorted visually. Visual sorting was strongly correlated with sorting by the SKNIR system (0.89 ≤ r ≤ 0.91); however, the SKNIR system had a wider range of FDK detection and was more consistent. Compared with the SKNIR system, visual raters overestimated FDK in samples with a low percentage of Fusarium-damaged grain and underestimated FDK in samples with a high percentage of Fusarium-damaged grain. Key words: Wheat, Fusarium head blight, Fusarium-damaged kernels, single-kernel near-infrared


2011 ◽  
Vol 208 (6) ◽  
pp. 1163-1177 ◽  
Author(s):  
Manfred Brigl ◽  
Raju V.V. Tatituri ◽  
Gerald F.M. Watts ◽  
Veemal Bhowruth ◽  
Elizabeth A. Leadbetter ◽  
...  

Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor–driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12–induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.


Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 724-730 ◽  
Author(s):  
S. A. Pereyra ◽  
R. Dill-Macky ◽  
A. L. Sims

Survival and inoculum production of Gibberella zeae (Schwein.) Petch (anamorph Fusarium graminearum (Schwabe)), the causal agent of Fusarium head blight of wheat and barley, was related to the rate of wheat (Triticum aestivum L.) residue decomposition. Infested wheat residue, comprising intact nodes, internodes, and leaf sheaths, was placed in fiberglass mesh bags on the soil surface and at 7.5- to 10-cm and 15- to 20-cm depths in chisel-plowed plots and 15 to 20 cm deep in moldboard-plowed plots in October 1997. Residue was sampled monthly from April through November during 1998 and every 2 months through April to October 1999. Buried residue decomposed faster than residue placed on the soil surface. Less than 2% of the dry-matter residue remained in buried treatments after 24 months in the field, while 25% of the residue remained in the soil-surface treatment. Survival of G. zeae on node tissues was inversely related to the residue decomposition rate. Surface residue provided a substrate for G. zeae for a longer period of time than buried residue. Twenty-four months after the initiation of the trial, the level of colonization of nodes in buried residue was half the level of colonization of residue on the soil surface. Colonization of node tissues by G. zeae decreased over time, but increased for other Fusarium spp. Ascospores of G. zeae were still produced on residue pieces after 23 months, and these spores were capable of inducing disease. Data from this research may assist in developing effective management strategies for residues infested with G. zeae.


Sign in / Sign up

Export Citation Format

Share Document