scholarly journals Integrated Signaling Network Involving Calcium, Nitric Oxide, and Active Oxygen Species but Not Mitogen-Activated Protein Kinases in BcPG1-Elicited Grapevine Defenses

2006 ◽  
Vol 19 (4) ◽  
pp. 429-440 ◽  
Author(s):  
Elodie Vandelle ◽  
Benoît Poinssot ◽  
David Wendehenne ◽  
Marc Bentéjac ◽  
Alain Pugin

We have already reported the identification of the endopolygalacturonase 1 (BcPG1) from Botrytis cinerea as a potent elicitor of defense responses in grapevine, independently of its enzymatic activity. The aim of the present study is the analysis of the signaling pathways triggered by BcPG1 in grapevine cells. Our data indicate that BcPG1 induces a Ca2+ entry from the apoplasm, which triggers a phosphorylation-dependent nitric oxide (NO) production via an enzyme probably related to a NO synthase. Then NO is involved in i) cytosolic calcium homeostasis, by activating Ca2+ release from internal stores and regulating Ca2+ fluxes across the plasma membrane, ii) plasma membrane potential variation, iii) the activation of active oxygen species (AOS) production, and iv) defense gene expression, including phenylalanine ammonia lyase and stilbene synthase, which encode enzymes responsible for phytoalexin biosynthesis. Interestingly enough, mitogen-activated protein kinase (MAPK) activation is independent of this regulation pathway that closely connects Ca2+, NO, and AOS.

Surgery Today ◽  
1995 ◽  
Vol 25 (9) ◽  
pp. 774-777 ◽  
Author(s):  
Katsuhisa Tanjoh ◽  
Atsuyuki Shima ◽  
Mitsuhiro Aida ◽  
Ryouichi Tomita ◽  
Yasuhiko Kurosu

2019 ◽  
Vol 20 (17) ◽  
pp. 4135 ◽  
Author(s):  
Ravi Gupta ◽  
Cheol Woo Min ◽  
Yu-Jin Kim ◽  
Sun Tae Kim

MSP1 is a Magnaporthe oryzae secreted protein that elicits defense responses in rice. However, the molecular mechanism of MSP1 action is largely elusive. Moreover, it is yet to be established whether MSP1 functions as a pathogen-associated molecular pattern (PAMP) or an effector. Here, we employed a TMT-based quantitative proteomic analysis of cytosolic as well as plasma membrane proteins to decipher the MSP1 induced signaling in rice. This approach led to the identification of 6691 proteins, of which 3049 were identified in the plasma membrane (PM), while 3642 were identified in the cytosolic fraction. A parallel phosphoproteome analysis led to the identification of 1906 phosphopeptides, while the integration of proteome and phosphoproteome data showed activation of proteins related to the proteolysis, jasmonic acid biosynthesis, redox metabolism, and MAP kinase signaling pathways in response to MSP1 treatment. Further, MSP1 induced phosphorylation of some of the key proteins including respiratory burst oxidase homologue-D (RBOHD), mitogen-activated protein kinase kinase kinase-1 (MEKK1), mitogen-activated protein kinase-3/6 (MPK3/6), calcium-dependent protein kinase (CDPK) and calmodulin (CaM) suggest activation of PAMP-triggered immunity (PTI) in response to MSP1 treatment. In essence, our results further support the functioning of MSP1 as a PAMP and provide an overview of the MSP1 induced signaling in rice leaves.


1998 ◽  
Vol 274 (4) ◽  
pp. F673-F679 ◽  
Author(s):  
Zhonghong Guan ◽  
Shaavhree Y. Buckman ◽  
Lisa D. Baier ◽  
Aubrey R. Morrison

The inflammatory cytokine interleukin-1β (IL-1β) induces both cyclooxygenase-2 (Cox-2) and the inducible nitric oxide synthase (iNOS) with concomitant release of PGs and nitric oxide (NO) by glomerular mesangial cells. In our current studies, we determine whether insulin and IGF-I are involved in the signal transduction mechanisms resulting in IL-1β-induced NO and PGE2biosynthesis in renal mesangial cells. We demonstrate that both insulin and IGF-I increase IL-1β-induced Cox-2 and iNOS protein expression, which in turn enhance PGE2 and NO production. Our data also indicate that both insulin and IGF-I enhance IL-1β-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and SAPK activation. These findings implicate the possible role of the MAPK pathway in mediating the effects of insulin and IGF-I on the upregulation of cytokine-stimulated NO and PG biosynthesis. Together, our results indicate that IGF-I and insulin may function to modulate the renal inflammatory process.


2020 ◽  
Vol 21 (13) ◽  
pp. 4620 ◽  
Author(s):  
Che-Hwon Park ◽  
Seon-Young Min ◽  
Hye-Won Yu ◽  
Kyungmin Kim ◽  
Suyeong Kim ◽  
...  

Apigenin (4′,5,7-trihydroxyflavone, flavonoid) is a phenolic compound that is known to reduce the risk of chronic disease owing to its low toxicity. The first study on apigenin analyzed its effect on histamine release in the 1950s. Since then, anti-mutation and antitumor properties of apigenin have been widely reported. In the present study, we evaluated the apigenin-mediated amelioration of skin disease and investigated its applicability as a functional ingredient, especially in cosmetics. The effect of apigenin on RAW264.7 (murine macrophage), RBL-2H3 (rat basophilic leukemia), and HaCaT (human immortalized keratinocyte) cells were analyzed. Apigenin (100 μM) significantly inhibited nitric oxide (NO) production, cytokine expression (interleukin (IL)-1β, IL6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase [iNOS]), and phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) in RAW264.7 cells. Apigenin (30 μM) also inhibited the phosphorylation of signaling molecules (Lyn, Syk, phospholipase Cγ1, ERK, and JNK) and the expression of high-affinity IgE receptor FcεRIα and cytokines (tumor necrosis factor (TNF)-α, IL-4, IL-5, IL-6, IL-13, and COX-2) that are known to induce inflammation and allergic responses in RBL-2H3 cells. Further, apigenin (20 μM) significantly induced the expression of filaggrin, loricrin, aquaporin-3, hyaluronic acid, hyaluronic acid synthase (HAS)-1, HAS-2, and HAS-3 in HaCaT cells that are the main components of the physical barrier of the skin. Moreover, it promoted the expression of human β-defensin (HBD)-1, HBD-2, HBD-3, and cathelicidin (LL-37) in HaCaT cells. These antimicrobial peptides are known to play an important role in the skin as chemical barriers. Apigenin significantly suppressed the inflammatory and allergic responses of RAW264.7 and RBL cells, respectively, and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases. Apigenin could also be used to improve the functions of the physical and chemical skin barriers and to alleviate psoriasis, acne, and atopic dermatitis.


2006 ◽  
Vol 19 (7) ◽  
pp. 711-724 ◽  
Author(s):  
Angela Garcia-Brugger ◽  
Olivier Lamotte ◽  
Elodie Vandelle ◽  
Stéphane Bourque ◽  
David Lecourieux ◽  
...  

Plant pathogen attacks are perceived through pathogen-issued compounds or plant-derived molecules that elicit defense reactions. Despite the large variety of elicitors, general schemes for cellular elicitor signaling leading to plant resistance can be drawn. In this article, we review early signaling events that happen after elicitor perception, including reversible protein phosphorylations, changes in the activities of plasma membrane proteins, variations in free calcium concentrations in cytosol and nucleus, and production of nitric oxide and active oxygen species. These events occur within the first minutes to a few hours after elicitor perception. One specific elicitor transduction pathway can use a combination or a partial combination of such events which can differ in kinetics and intensity depending on the stimulus. The links between the signaling events allow amplification of the signal transduction and ensure specificity to get appropriate plant defense reactions. This review first describes the early events induced by cryptogein, an elici-tor of tobacco defense reactions, in order to give a general scheme for signal transduction that will be use as a thread to review signaling events monitored in different elicitor or plant models.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1324
Author(s):  
Su-Lim Kim ◽  
Hack Sun Choi ◽  
Yu-Chan Ko ◽  
Bong-Sik Yun ◽  
Dong-Sun Lee

Inflammation is the first response of the immune system against bacterial pathogens. This study isolated and examined an antioxidant derived from Lactobacillus fermentation products using cultured media with 1% beet powder. The antioxidant activity of the beet culture media was significantly high. Antioxidant activity-guided purification and repeated sample isolation yielded an isolated compound, which was identified as 5-hydoxymaltol using nuclear magnetic resonance spectrometry. We examined the mechanism of its protective effect on lipopolysaccharide (LPS)-induced inflammation of macrophages. 5-Hydroxymaltol suppressed nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. It also suppressed tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS) in the messenger RNA and protein levels in LPS-treated RAW 264.7 cells. Moreover, it suppressed LPS-induced nuclear translocation of NF-κB (p65) and mitogen-activated protein kinase activation. Furthermore, 5-hydroxymaltol reduced LPS-induced reactive oxygen species (ROS) production as well as increased nuclear factor erythroid 2–related factor 2 and heme oxygenase 1 expression. Overall, this study found that 5-hydroxymaltol has anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophage cells based on its inhibition of pro-inflammatory cytokine production depending on the nuclear factor κB signaling pathway, inhibition of LPS-induced reactive oxygen species production, inhibition of LPS-induced mitogen-activated protein kinase induction, and induction of the nuclear factor erythroid 2–related factor 2/heme oxygenase 1 signaling pathway. Our data showed that 5-hydroxymaltol may be an effective compound for treating inflammation-mediated diseases.


2018 ◽  
Vol 31 (4) ◽  
pp. 403-409 ◽  
Author(s):  
Yujun Peng ◽  
Rowan van Wersch ◽  
Yuelin Zhang

Plants use diverse immune receptors to sense pathogen attacks. Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors localized on the plasma membrane leads to PAMP-triggered immunity (PTI). Detection of pathogen effectors by intracellular or plasma membrane–localized immune receptors results in effector-triggered immunity (ETI). Despite the large variations in the magnitude and duration of immune responses triggered by different PAMPs or pathogen effectors during PTI and ETI, plasma membrane–localized immune receptors activate similar downstream molecular events such as mitogen-activated protein kinase activation, oxidative burst, ion influx, and increased biosynthesis of plant defense hormones, indicating that defense signals initiated at the plasma membrane converge at later points. On the other hand, activation of ETI by immune receptors localized to the nucleus appears to be more directly associated with transcriptional regulation of defense gene expression. Here, we review recent progress in signal transductions downstream of different groups of plant immune receptors, highlighting the converging and diverging molecular events.


Sign in / Sign up

Export Citation Format

Share Document