scholarly journals Ground Vegetation Survey for Xylella fastidiosa in California Almond Orchards

Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 905-909 ◽  
Author(s):  
Elaine B. Shapland ◽  
Kent M. Daane ◽  
Glenn Y. Yokota ◽  
Christina Wistrom ◽  
Joseph H. Connell ◽  
...  

Xylella fastidiosa is a xylem-limited bacterium that causes almond leaf scorch (ALS), Pierce's disease of grapevines, and other plant diseases. We surveyed ground vegetation in ALS-infected almond orchards in California's Central Valley for the presence of this bacterium. Plant tissue samples were collected throughout a 2-year period and processed for the presence of X. fastidiosa using restriction enzyme digestion of RST31 and RST33 polymerase chain reaction (PCR) products and bacterial culture on selective media. Overall disease incidence was low in the ground vegetation species; only 63 of 1,369 samples tested positive. Of the 38 species of common ground vegetation tested, 11 tested positive for X. fastidiosa, including such common species as shepherd's purse (Capsella bursa-pastoris), filaree (Erodium spp.), cheeseweed (Malva parvifolia), burclover (Medicago polymorpha), annual bluegrass (Poa annua) London rocket (Sisymbrium irio), and chickweed (Stellaria media). There was a seasonal component to bacterial presence, with positive samples found only between November and March. Both ground vegetation and almond trees were most commonly infected with the almond strain of X. fastidiosa (six of seven surveyed sites). ALS-infected almond samples had an X. fastidiosa concentration within previously reported ranges (1.84 × 106 to 2.15 × 107 CFU/g); however, we were unable to accurately measure X. fastidiosa titer in sampled ground vegetation for comparison. These results are discussed with respect to ground vegetation management for ALS control.

Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 409-414 ◽  
Author(s):  
Mark S. Sisterson ◽  
Jianchi Chen ◽  
Mario A. Viveros ◽  
Edwin L. Civerolo ◽  
Craig Ledbetter ◽  
...  

Almond leaf scorch (ALS) disease has been present in California's almond-growing regions for over 60 years. This disease is caused by the bacterium Xylella fastidiosa and the pathogen is vectored by xylem-feeding sharpshooters and spittlebugs. Currently, there are no effective management techniques that prevent trees from becoming infected. Within affected orchards throughout California's Central Valley, disease incidence and the risk of tree-to-tree spread appears to be low. Consequently, the decision to remove or keep infected trees depends on lost productivity. We compared yield and vitality between infected and uninfected almond for cvs. Sonora and Nonpareil. Sonora was examined at three sites over 3 years and Nonpareil was examined at one site over 2 years. Yields of ALS-affected trees were significantly lower for both cultivars, although yield losses of Sonora were proportionally greater than those of Nonpareil. Yields of infected trees did not decline incrementally over years; rather, they fluctuated similarly to those of uninfected trees. In addition, no infected trees died during the course of the study. These results are in direct contrast to previous anecdotal reports which suggest that yields of infected trees incrementally decline and infected trees eventually die. A simple economic model was developed to determine conditions under which rouging infected trees would increase returns. Based on the model, orchard age, yield loss due to infection, and the value of a maximally producing almond tree should be considered when deciding to remove ALS-affected trees.


Plant Disease ◽  
2004 ◽  
Vol 88 (8) ◽  
pp. 909-909 ◽  
Author(s):  
S. N. Wegulo ◽  
S. T. Koike ◽  
M. Vilchez ◽  
P. Santos

During February 2004, diseased double impatiens (Impatiens walleriana) plants were received from a commercial grower in southern California. The upper surfaces of symptomatic leaves were pale yellow with no distinct lesions. Diseased leaves later wilted, and severely affected leaves abscised from the stem. At the nursery, only double impatiens plants in the Fiesta series were infected, and some cultivars were more heavily infected than others. Disease incidence in cv. Sparkler Hot pink was nearly 100%. The interior of infected leaves was colonized by coenocytic mycelium. A conspicuous white growth was observed only on the underside of leaves. Sporangiophores were hyaline, thin walled, emergent from stomata, and had slightly swollen bases. Sporangiophore branching was distinctly monopodial. Smaller sporangiophore branches were arranged at right angles to the supporting branches, and tips of branches measured 8 to 14 μm long. Sporangia were ovoid and hyaline with a single pore on the distal ends. Distal ends of sporangia were predominantly flat but occasionally had a slight papilla. Short pedicels were present on the attached ends. Sporangia measured 19.4 to 22.2 (-25.0) μm × 13.9 to 16.7 (-19.4) μm. Oospores were not observed in leaf tissue. On the basis of symptoms and morphology of the organism, the pathogen was identified as Plasmopara obducens J. Schröt. Pathogenicity tests were done on double type cvs. Fiesta, Tioga Red, and Tioga Cherry Red and on single type cvs. Cajun Watermelon and Accent Lilac. Plants were spray inoculated with sporangiospore suspensions (1 × 104 sporangiospores per milliliter), incubated for 24 h in a dew chamber (18 to 20°C), and then maintained in a greenhouse (22 to 24°C). Symptoms and signs of downy mildew developed after 12 days only on inoculated cv. Fiesta plants, and the pathogen morphology matched that of the originally observed pathogen. Nontreated control plants did not develop downy mildew. To our knowledge, this is the first report of downy mildew on impatiens in California. P. obducens is one of two causal agents of downy mildew of impatiens (2,4). The other pathogen, Bremiella sphaerosperma, has dichotomous sporangiophore branching and causes lesions with well-defined margins (2,4). In the United States, the disease has been recorded in the eastern and northeastern states and in Indiana, Minnesota, Mississippi, Montana, and Wisconsin (3). In Canada, the disease has been recorded in Manitoba and Quebec (1). References: (1) I. L. Conners. An Annotated Index of Plant Diseases in Canada and Fungi Recorded on Plants in Alaska, Canada, and Greenland. Research Branch, Canada Department of Agriculture, Publication 1251, 1967. (2) O. Constantinescu. Mycologia 83:473, 1991. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, 1989. (4) G. W. Wilson. Bull. Torrey Bot. Club 34:387, 1907.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2393
Author(s):  
Xiuping Wang ◽  
Fei Peng ◽  
Caihong Cheng ◽  
Lina Chen ◽  
Xuejuan Shi ◽  
...  

Plant pathogens constantly develop resistance to antimicrobial agents, and this poses great challenges to plant protection. Therefore, there is a pressing need to search for new antimicrobials. The combined use of antimicrobial agents with different antifungal mechanisms has been recognized as a promising approach to manage plant diseases. Graphene oxide (GO) is a newly emerging and highly promising antimicrobial agent against various plant pathogens in agricultural science. In this study, the inhibitory activity of GO combined with fungicides (Mancozeb, Cyproconazol and Difenoconazole) against Fusarium graminearum was investigated in vivo and in vitro. The results revealed that the combination of GO and fungicides has significant synergistic inhibitory effects on the mycelial growth, mycelial biomass and spore germination of F. graminearum relative to single fungicides. The magnitude of synergy was found to depend on the ratio of GO and fungicide in the composite. In field tests, GO–fungicides could significantly reduce the disease incidence and disease severity, exhibiting a significantly improved control efficacy on F. graminearum. The strong synergistic activity of GO with existing fungicides demonstrates the great application potential of GO in pest management.


2020 ◽  
Vol 40 (11) ◽  
pp. 1583-1594
Author(s):  
Erika Sabella ◽  
Samuele Moretti ◽  
Holger Gärtner ◽  
Andrea Luvisi ◽  
Luigi De Bellis ◽  
...  

Abstract Xylella fastidiosa (Xf) Wells, Raju et al., 1986 is a bacterium that causes plant diseases in the Americas. In Europe, it was first detected on the Salento Peninsula (Italy), where it was found to be associated with the olive quick decline syndrome. Here, we present the results of the first tree-ring study of infected and uninfected olive trees (Olea europaea L.) of two different cultivars, one resistant and one susceptible, to establish the effects induced by the spread of the pathogen inside the tree. Changes in wood anatomical characteristics, such as an increase in the number of vessels and in ring width, were observed in the infected plants of both the cultivars Cellina di Nardò (susceptible to Xf infection) and Leccino (resistant to Xf infection). Thus, whether infection affects the mortality of the tree or not, the tree shows a reaction to it. The presence of occlusions was detected in the wood of both 4-year-old branches and the tree stem core. As expected, the percentage of occluded vessels in the Xf-susceptible cultivar Cellina di Nardò was significantly higher than in the Xf-resistant cultivar Leccino. The δ 18O of the 4-year-old branches was significantly higher in infected trees of both cultivars than in noninfected trees, while no variations in δ 13C were observed. This suggests a reduction in leaf transpiration rates during infection and seems to be related to the occlusions observed in rings of the 4-year-old branches. Such occlusions can determine effects at leaf level that could influence stomatal activity. On the other hand, the significant increase in the number of vessels in infected trees could be related to the tree’s attempt to enhance water conductivity in response to the pathogen-induced vessel occlusions.


2007 ◽  
Vol 121 (1) ◽  
pp. 76 ◽  
Author(s):  
David J. Garbary ◽  
Barry R. Taylor

Over 85 records of 23 species of blooming, herbaceous angiosperms were made at 19 sites in Antigonish County between 7 and 21 January 2006, when daytime temperatures reached 15°C. These observations followed an unusually warm fall and early winter. All species were observed on waste ground or in fields and garden plots, except for Epigaea repens L. which was part of ground vegetation in a sparsely wooded site. The primary families represented were Asteraceae (six species), Brassicaceae (six species) and Carophyllaceae (four species). The most commonly observed plants were Taraxacum officinale (L.) Weber (11 sites), Capsella bursa-pastoris (L.) Medik. (nine sites), Thlaspi arvense L. (three sites) and Stellaria media (L.) Vill. (four sites). Many plants and inflorescences were conspicuously frost-damaged, and flowers were rarely fully open. In several species, e.g., T. arvense and Cerastium vulgatum L., many individual plants looked normal and there was no evidence of frost damage. These observations are the latest flowering records for Nova Scotia.


Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 239-245
Author(s):  
Silvio A. Lopes

Citrus variegated chlorosis (CVC) disease, caused by the xylem-limited and insect-transmitted bacterium Xylella fastidiosa, has caused severe losses in orange production in Brazil. Disease control requires insecticide applications, tree removal, and pruning of symptomatic branches. Pruning success has been erratic, especially in areas of high disease incidence. In this work, in planta X. fastidiosa distribution and the effectiveness of severe pruning procedures for curing diseased adult trees were investigated. Most sampled upper parts of the trees contained X. fastidiosa, but at higher frequencies in symptomatic branches. Removal of all main branches (decapitation) was not effective and revealed a 20 to 30% incidence of latent infections. Trunk decapitation resulted in a higher number of healthy scions but killed 10 to 30% of the remaining trunks. Removal of all scion and grafting the newly sprouted shoots of ‘Rangpur’ lime (Citrus limonia Osbeck) or ‘Cleopatra’ (Citrus reshni Hort. ex Tan.) rootstocks with healthy buds allowed production of fast-growing and productive new scions that remained free from CVC for at least 2 years in four locations. With this method, highly affected trees do not need to be fully removed and the costs involved in this practice and in young tree acquisition and plantings are circumvented; therefore, it is a feasible option for less technically inclined small growers in Brazil.


2020 ◽  
Vol 117 (17) ◽  
pp. 9250-9259 ◽  
Author(s):  
Kevin Schneider ◽  
Wopke van der Werf ◽  
Martina Cendoya ◽  
Monique Mourits ◽  
Juan A. Navas-Cortés ◽  
...  

Xylella fastidiosa is the causal agent of plant diseases that cause massive economic damage. In 2013, a strain of the bacterium was, for the first time, detected in the European territory (Italy), causing the Olive Quick Decline Syndrome. We simulate future spread of the disease based on climatic-suitability modeling and radial expansion of the invaded territory. An economic model is developed to compute impact based on discounted foregone profits and losses in investment. The model projects impact for Italy, Greece, and Spain, as these countries account for around 95% of the European olive oil production. Climatic suitability modeling indicates that, depending on the suitability threshold, 95.5 to 98.9%, 99.2 to 99.8%, and 84.6 to 99.1% of the national areas of production fall into suitable territory in Italy, Greece, and Spain, respectively. For Italy, across the considered rates of radial range expansion the potential economic impact over 50 y ranges from 1.9 billion to 5.2 billion Euros for the economic worst-case scenario, in which production ceases after orchards die off. If replanting with resistant varieties is feasible, the impact ranges from 0.6 billion to 1.6 billion Euros. Depending on whether replanting is feasible, between 0.5 billion and 1.3 billion Euros can be saved over the course of 50 y if disease spread is reduced from 5.18 to 1.1 km per year. The analysis stresses the necessity to strengthen the ongoing research on cultivar resistance traits and application of phytosanitary measures, including vector control and inoculum suppression, by removing host plants.


2020 ◽  
Vol 110 (11) ◽  
pp. 1740-1750
Author(s):  
Flavia Occhibove ◽  
Daniel S. Chapman ◽  
Alexander J. Mastin ◽  
Stephen S. R. Parnell ◽  
Barbara Agstner ◽  
...  

In order to prevent and control the emergence of biosecurity threats such as vector-borne diseases of plants, it is vital to understand drivers of entry, establishment, and spatiotemporal spread, as well as the form, timing, and effectiveness of disease management strategies. An inherent challenge for policy in combatting emerging disease is the uncertainty associated with intervention planning in areas not yet affected, based on models and data from current outbreaks. Following the recent high-profile emergence of the bacterium Xylella fastidiosa in a number of European countries, we review the most pertinent epidemiological uncertainties concerning the dynamics of this bacterium in novel environments. To reduce the considerable ecological and socio-economic impacts of these outbreaks, eco-epidemiological research in a broader range of environmental conditions needs to be conducted and used to inform policy to enhance disease risk assessment, and support successful policy-making decisions. By characterizing infection pathways, we can highlight the uncertainties that surround our knowledge of this disease, drawing attention to how these are amplified when trying to predict and manage outbreaks in currently unaffected locations. To help guide future research and decision-making processes, we invited experts in different fields of plant pathology to identify data to prioritize when developing pest risk assessments. Our analysis revealed that epidemiological uncertainty is mainly driven by the large variety of hosts, vectors, and bacterial strains, leading to a range of different epidemiological characteristics further magnified by novel environmental conditions. These results offer new insights on how eco-epidemiological analyses can enhance understanding of plant disease spread and support management recommendations. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


2016 ◽  
Vol 49 (1) ◽  
pp. 91-98 ◽  
Author(s):  
H. Barari

AbstractTrichodermaspp. have long been used as biological control agents against plant fungal diseases, but the mechanisms by which the fungi confer protection are not well understood. Our goal in this study was to isolate species ofTrichoderma, that exhibit high levels of biocontrol efficacy from natural environments and to investigate the mechanisms by which these strains confer plant protection. In this study, efficacy of the native isolates ofTrichodermaspecies to promote the growth and yield parameters of tomato and to manageFusariumwilt disease underin vitroandin vivoconditions were investigated. The dominant pathogen, which causesFusariumwilt of tomato, was isolated and identified asFusarium oxysporumf. sp.lycopersici(FOL). Twenty eight nativeTrichodermaantagonists were isolated from healthy tomato rhizosphere soil in different geographical regions of Mazandaran province, Iran. Underin vitroconditions, the results revealed thatTrichoderma harzianum, isolate N-8, was found to inhibit effectively the radial mycelial growth of the pathogen (by 68.22%). Under greenhouse conditions, the application ofT. harzianum(N-8) exhibited the least disease incidence (by 14.75%). Also, tomato plants treated withT. harzianum(N-8) isolate showed a significant stimulatory effect on plant height (by 70.13 cm) and the dry weight (by 265.42 g) of tomato plants, in comparison to untreated control (54.6 cm and 195.5 g). Therefore, the antagonistT. harzianum(N-8) is chosen to be the most promising bio-control agent forF. oxysporumf. sp.lycopersici. On the base of present study, the biocontrol agents of plant diseases might be exploited for sustainable disease management programs to save environmental risk.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 147-147
Author(s):  
J. H. Park ◽  
S. E. Cho ◽  
K. S. Han ◽  
H. D. Shin

Garlic chives, Allium tuberosum Roth., are widely cultivated in Asia and are the fourth most important Allium crop in Korea. In June 2011, a leaf blight of garlic chives associated with a Septoria spp. was observed on an organic farm in Hongcheon County, Korea. Similar symptoms were also found in fields within Samcheok City and Yangku County of Korea during the 2011 and 2012 seasons. Disease incidence (percentage of plants affected) was 5 to 10% in organic farms surveyed. Diseased voucher specimens (n = 5) were deposited at the Korea University Herbarium (KUS). The disease first appeared as yellowish specks on leaves, expanding to cause a leaf tip dieback. Half of the leaves may be diseased within a week, especially during wet weather. Pycnidia were directly observed in leaf lesions. Pycnidia were amphigenous, but mostly epigenous, scattered, dark brown to rusty brown, globose, embedded in host tissue or partly erumpent, separate, unilocular, 50 to 150 μm in diameter, with ostioles of 20 to 40 μm in diameter. Conidia were acicular, straight to sub-straight, truncate at the base, obtuse at the apex, hyaline, aguttulate, 22 to 44 × 1.8 to 3 μm, mostly 3-septate, occasionally 1- or 2-septate. These morphological characteristics matched those of Septoria allii Moesz, which is differentiated from S. alliacea on conidial dimensions (50 to 60 μm long) (1,2). A monoconidial isolate was cultured on potato dextrose agar (PDA). Two isolates have been deposited in the Korean Agricultural Culture Collection (Accession Nos. KACC46119 and 46688). Genomic DNA was extracted using the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1/ITS4 primers and sequenced. The resulting sequence of 482-bp was deposited in GenBank (JX531648 and JX531649). ITS sequence information was at least 99% similar to those of many Septoria species, however no information was available for S. allii. Pathogenicity was tested by spraying leaves of three potted young plants with a conidial suspension (2 × 105 conidia/ml), which was harvested from a 4-week-old culture on PDA. Control leaves were sprayed with sterile water. The plants were placed in humid chambers (relative humidity 100%) for the first 48 h. After 7 days, typical leaf blight symptoms started to develop on the leaves of inoculated plants. S. allii was reisolated from the lesions of inoculated plants, confirming Koch's postulates. No symptoms were observed on control plants. The host-parasite association of A. tuberosum and S. allii has been known only from China (1). S. alliacea has been recorded on several species of Allium, e.g. A. cepa, A. chinense, A. fistulosum, and A. tuberosum from Japan (4) and A. cepa from Korea (3). To the best of our knowledge, this is the first report of S. allii on garlic chives. No diseased plants were observed in commercial fields of garlic chives which involved regular application of fungicides. The disease therefore seems to be limited to organic garlic chive production. References: (1) P. K. Chi et al. Fungous Diseases on Cultivated Plants of Jilin Province, Science Press, Beijing, China, 1966. (2) P. A. Saccardo. Sylloge Fungorum Omnium Hucusque Congnitorum. XXV. Berlin, 1931. (3) The Korean Society of Plant Pathology. List of Plant Diseases in Korea, Suwon, Korea, 2009. (4) The Phytopathological Society of Japan. Common Names of Plant Diseases in Japan, Tokyo, Japan, 2000.


Sign in / Sign up

Export Citation Format

Share Document