scholarly journals Detection and Characterization of QoI-Resistant Phytophthora capsici Causing Pepper Phytophthora Blight in China

Plant Disease ◽  
2018 ◽  
Vol 102 (9) ◽  
pp. 1725-1732 ◽  
Author(s):  
Dicheng Ma ◽  
Jiangong Jiang ◽  
Leiming He ◽  
Kaidi Cui ◽  
Wei Mu ◽  
...  

Phytophthora capsici is a highly destructive plant pathogen that has spread worldwide. To date, the quinone outside inhibitor (QoI) azoxystrobin has been the choice of farmers for managing this oomycete. In this study, the sensitivity of 90 P. capsici isolates collected from Yunnan, Fujian, Jiangxi, Zhejiang, and Guangdong in southern China to azoxystrobin was assessed based on mycelial growth, sporangia formation, and zoospore discharge. Furthermore, the mitochondrial cytochrome b (cytb) gene from azoxystrobin-sensitive and -resistant P. capsici isolates was compared to investigate the mechanism of QoI resistance. The high values for effective concentration to inhibit 50% of mycelial growth and large variation factor obtained provide strong support for the existence of azoxystrobin-resistant subpopulations in wild populations. The resistance frequency of P. capsici to azoxystrobin was greater than 40%. Sensitive P. capsici isolates were strongly suppressed on V8 medium plates containing azoxystrobin supplemented with salicylhydroxamic acid at 50 µg ml−1, whereas resistant isolates grew well under these conditions. Multiple alignment analysis revealed a missense mutation in the cytb gene that alters codon 137 (GGA to AGA), causing an amino acid substitution of glycine to arginine (G137R). The fitness of the azoxystrobin-sensitive isolate is similar to that of the G137R mutant. Additionally, the P. capsici isolates used in this study exhibited decreased sensitivity to two other QoI fungicides (pyraclostrobin and famoxadone). Necessary measures should be taken to control this trend of resistance to QoI that has developed in P. capsici in southern China.

Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 863-868 ◽  
Author(s):  
Dicheng Ma ◽  
Jiamei Zhu ◽  
Leiming He ◽  
Kaidi Cui ◽  
Wei Mu ◽  
...  

Tetramycin is a new biopesticide that combines high-level and broad-spectrum fungicidal activity, low toxicity, and environmental safety. In this study, 90 Phytophthora capsici isolates obtained from various regions in southern China were characterized for their baseline sensitivity to tetramycin. The protective and curative activities of tetramycin against P. capsici were determined on leaves of pepper, and the control efficacy of tetramycin in greenhouse experiments was also determined. Compared with mycelial growth, the formation of sporangia and the discharge of zoospores were inhibited by lower concentrations of tetramycin, approximately 5 µg ml−1 on V8 media. The frequency distribution curves for the tetramycin sensitivity were unimodal, with mean values for the fungicide concentration that reduced mycelial growth, sporangia formation, and zoospore discharge by 50% compared with the control of 1.18 ± 0.91, 0.64 ± 0.42, and 0.63 ± 0.30 µg ml−1, respectively. In addition, no correlation was observed between tetramycin and other fungicides tested, including mandipropamid, azoxystrobin, mefenoxam, fluazinam, fluopicolide, and famoxadone. Tetramycin exhibited both protective and curative effects against P. capsici in vitro, and its protective activity was better than its curative activity. In greenhouse experiments, tetramycin concentration of 60 and 90 µg ml−1 provided a protective control efficacy of 47.1 to 56.4% and curative efficacy of 43.3 to 52.7%. These results demonstrated that tetramycin could serve as an excellent alternative fungicide to control Phytophthora blight of pepper.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1337-1342 ◽  
Author(s):  
K. L. Jackson ◽  
J. Yin ◽  
P. Ji

Phytophthora blight, caused by Phytophthora capsici, is a serious disease in vegetable production, and selective use of fungicides continues to be a significant component of disease management programs. The effect of three chemical compounds—mandipropamid, dimethomorph, and cyazofamid—on asexual stages of P. capsici collected from bell pepper and cucurbits in Georgia was assessed in this study. Forty isolates of P. capsici were determined to be sensitive to mandipropamid and dimethomorph based on mycelial growth, zoospore germination, and sporangial production. Concentrations that were 50% effective (EC50 values) of mandipropamid that inhibited mycelial growth, zoospore germination, and sporangial production of the isolates averaged 0.03, 5.70, and 0.02 μg/ml, respectively. EC50 values of dimethomorph in inhibiting mycelial growth, zoospore germination, and sporangial production averaged 0.24, 0.10, and 0.46 μg/ml, respectively. The majority of isolates were either resistant or intermediately sensitive to cyazofamid at 500 μg/ml or lower concentrations based on mycelial growth or sporangial production, although all the isolates were sensitive to this compound based on zoospore germination, with an average EC50 of 0.04 μg/ml. The results indicated that P. capsici populations in Georgia have not developed resistance to mandipropamid and dimethomorph whereas, for the majority of the isolates, certain asexual stages were resistant to cyazofamid.


Plant Disease ◽  
2020 ◽  
Author(s):  
Li Wang ◽  
Pingsheng Ji

Phytophthora blight, caused by Phytophthora capsici, is one of the most destructive diseases in the production of solanaceous and cucurbitaceous vegetable crops. Fluopicolide has been used to control the disease; however, reduced efficacy of the fungicide was observed in Georgia. P. capsici isolates were collected from commercial vegetable fields in Georgia in 2018 and 2019 to determine sensitivity to fluopicolide, which were phenotyped to have 43.1% of the isolates as resistant. The fitness of resistant (R) and sensitive (S) isolates was assessed through mycelial growth and sporulation assays exposed to the fungicide (0 or 50 µg/ml). Fluopicolide did not reduce mycelial growth, sporangial production and zoospore germination of the resistant isolates. In the absence of fluopicolide, there was no significant difference between the R and S isolates in sporangial production, but mycelial growth and zoospore germination of the R isolates was greater than the S isolates (P = 0.01 and 0.001, respectively). The R isolates had similar ability as S isolates to induce disease on ‘Aristotle’ bell pepper, and most of the R and S isolates caused the same level of disease on ‘Paladin’. Inoculating squash fruit using different R:S ratios and recovering R and S isolates after 5 cycles of inoculation resulted in similar trends in changes of R vs. S isolates ratios. Overall it appeared that fitness and competitive ability of the R isolates were not reduced compared to the S isolates. This is the first report of the occurrence of field isolates of P. capsici resistant to fluopicolide in the world. The results have significant implications in providing guidance for growers to avoid or limit use of this fungicide in vegetable production.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 743-748 ◽  
Author(s):  
Anthony P. Keinath

In summer and fall 2003, Phytophthora blight and crown rot, caused by Phytophthora capsici, was found in three fields each of summer squash and pepper on three farms in two counties in South Carolina. Although this disease had been confirmed previously in the state, five of these outbreaks were in fields thought to be free of P. capsici. The objectives of this study were to determine whether isolates of P. capsici in South Carolina were sensitive to mefenoxam and to determine baseline sensitivities to dimethomorph, zoxamide, and cymoxanil, fungicides recently registered to control Phytophthora blight. Of 120 isolates tested for sensitivity to mefenoxam at 100 mg/liter, 8 isolates were resistant (relative colony diameter [RCD] > 90% of nonamended control), 60 isolates were sensitive (RCD < 30%), and 52 isolates were intermediately sensitive. Only sensitive isolates were found in two fields in which no mefenoxam-containing fungicides had ever been used. Intermediately sensitive or resistant isolates were found in the four fields in which mefenoxam had been applied previously. In all, 15 to 61 isolates were tested for sensitivity to dimethomorph, zoxamide, and cymoxanil. The concentrations at which RCD, percent cyst germination, and relative zoospore production were reduced to 50% (EC50 values) for mycelial growth were 0.19 ± 0.02 (± standard deviation) mg/liter for dimethomorph, 0.50 ± 0.50 mg/liter for zoxamide, and mostly >50 mg/liter for cymoxanil. EC50 values for zoospore cyst germination were 0.07 ± 0.02 mg/liter for dimethomorph and >50 mg/liter for cymoxanil. EC50 values for zoospore production were 0.63 ± 0.42 mg/liter for dimethomorph, 0.47 ± 0.51 mg/liter for zoxamide, and <50 mg/liter for cymoxanil. Sensitivity values obtained in this South Carolina study can be used as a comparative baseline to monitor shifts in sensitivity to the fungicides mefenoxam, dimethomorph, zoxamide, and cymoxanil in populations of P. capsici.


Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1439-1443 ◽  
Author(s):  
Adalberto C. Café-Filho ◽  
Jean Beagle Ristaino

Despite the wide adoption of mefenoxam (Ridomil Gold EC) for vegetables in North Carolina, the incidence of Phytophthora blight on pepper (Capsicum annuum) and squash (Cucurbita pepo) is high. Seventy-five isolates of Phytophthora capsici were collected in five pepper and one squash field in order to assess mefenoxam sensitivity. The relative fitness of resistant and sensitive isolates was contrasted in vitro by their respective rates of colony growth and their ability to produce sporangia in unamended V8 juice agar medium. In in vivo experiments, the aggressiveness of isolates on pepper was evaluated. The frequency of resistant isolates in North Carolina populations was 63%, considerably higher than resistance levels in areas where mefenoxam is not widely adopted. Resistant isolates grew on amended media at rates >80 to 90% and >100% of the nonamended control at 100 μg ml-1 and 5 μg ml-1, respectively. Sensitive isolates did not growth at 5 or 100 μg ml-1. All isolates from three fields, including two pepper and a squash field, were resistant to mefenoxam. Populations from other fields were composed of either mixes of sensitive and resistant isolates or only sensitive isolates. Response to mefenoxam remained stable during the course of in vitro and in planta experiments. Occurrence of a mefenoxam-resistant population of P. capsici on squash is reported here for the first time in North Carolina. When measured by rate of colony growth, sporulation in vitro, or aggressiveness in planta, fitness of resistant isolates was not reduced. Mefenoxam-resistant isolates from squash were as aggressive on pepper as sensitive or resistant pepper isolates. These results suggest that mefenoxam-resistant populations of P. capsici are as virulent and fit as sensitive populations.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hafiz Muhammad Usman ◽  
Qin Tan ◽  
Mohammad Mazharul Karim ◽  
Muhammad Adnan ◽  
Weixiao Yin ◽  
...  

Anthracnose, mainly caused by Colletotrichum gloeosporioides species complex including C. fructicola and C. siamense, is a devastating disease of peach. The chemical control has been widely used for years and management failures have increased towards commonly used fungicides. Therefore, screening of sensitivity of Colletotrichum spp. to fungicides with different modes of action is needed to make proper management strategies for peach anthracnose. In this study, sensitivity of 80 isolates of C. fructicola and C. siamense was screened for pyraclostrobin, procymidone, prochloraz and fludioxonil based on mycelial growth inhibition at discriminatory doses. Results showed that C. fructicola and C. siamense isolates were highly resistant to procymidone and fludioxonil with 100% resistance frequencies to both fungicides, but sensitive to prochloraz, i.e., no resistant isolates were found. For pyraclostrobin, 74% of C. fructicola isolates showed high resistance and 26 % were low resistant, all of the C. siamense isolates were low resistant. No positive cross-resistance was observed between pyraclostrobin and azoxystrobin, even they are members of the same quinone outside inhibitor (QoI) fungicide group, and between pyraclostrobin and non-QoIs. Resistant isolates to QoI fungicides were evaluated for the fitness penalty. Results showed that no significant differences except for mycelial growth rates were detected between highly resistant and low-resistant isolates of C. fructicola. Molecular characterization of Cyt b gene revealed that the G143A point mutation was the determinant of the high resistance in C. fructicola. This study demonstrated the current resistance status of C. fructicola and C. siamense to different fungicides and their future perspectives. Demethylation inhibitor (DMI) fungicides are the best option among different chemicals to control peach anthracnose in China.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 1910-1917 ◽  
Author(s):  
Claudia V. Castell-Miller ◽  
Deborah A. Samac

The occurrence of fungal brown spot, caused by Bipolaris oryzae, has increased in cultivated wild rice (Zizania palustris) paddies in spite of the use of azoxystrobin-based fungicides. The active ingredient blocks electron transfer at the quinone outside inhibitor (QoI) site in the mitochondrial cytochrome b within the bc1 complex, thus obstructing respiration. The in vitro averaged EC50 of baseline isolates collected in 2007 before widespread fungicide use was estimated to be 0.394 µg/ml with PROBIT and 0.427 µg/ml with linear regression analyses. Isolates collected during 2008, 2015, and 2016 had a range of sensitivity as measured by relative spore germination (RG) at a discriminatory dose of 0.4 µg/ml azoxystrobin. Isolates with a higher (≥80%) and lower RG (≤40%) had the wild type nucleotides at amino acid positions F129, G137, and G143 of cytochrome b, sites known to be associated with QoI fungicide resistance. Two Group I introns were found in the QoI target area. The splicing site for the second intron was found immediately after the codon for G143. A mutation for fungicide resistance at this location would hinder splicing and severely reduce fitness. B. oryzae expresses an alternative oxidase in vitro, which allows the fungus to survive inhibition of respiration by azoxystrobin. This research indicates that B. oryzae has not developed resistance to QoI fungicides, although monitoring for changes in sensitivity should be continued. Judicious use of QoI fungicides within an integrated disease management system will promote an effective and environmentally sound control of the pathogen in wild rice paddies.


2019 ◽  
Vol 20 (11) ◽  
pp. 2641
Author(s):  
Sang-Choon Lee ◽  
Sang-Heon Kim ◽  
Rachel A. Hoffmeister ◽  
Moon-Young Yoon ◽  
Sung-Kun Kim

The plant disease Phytophthora blight, caused by the oomycete pathogen Phytophthora capsici, is responsible for major economic losses in pepper production. Microtubules have been an attractive target for many antifungal agents as they are involved in key cellular events such as cell proliferation, signaling, and migration in eukaryotic cells. In order to design a novel biocompatible inhibitor, we screened and identified inhibitory peptides against alpha- and beta-tubulin of P. capsici using a phage display method. The identified peptides displayed a higher binding affinity (nanomolar range) and improved specificity toward P. capsici alpha- and beta-tubulin in comparison to Homo sapiens tubulin as evaluated by fluorometric analysis. One peptide demonstrated the high inhibitory effect on microtubule formation with a nanomolar range of IC50 values, which were much lower than a well-known chemical inhibitor—benomyl (IC50 = 500 µM). Based on these results, this peptide can be employed to further develop promising candidates for novel antifungal agents against Phytophthora blight.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 1884-1888 ◽  
Author(s):  
Hongjie Liang ◽  
Jinli Li ◽  
Chaoxi Luo ◽  
Jianhong Li ◽  
Fu-Xing Zhu

It is a common practice to add salicylhydroxamic acid (SHAM) into artificial medium in the in vitro sensitivity assay of fungal phytopathogens to the quinone outside inhibitor (QoI) fungicides. The rationale for adding SHAM is to inhibit fungal alternative oxidase, which is presumed to be inhibited by secondary metabolites of plants. Therefore, the ideal characteristics of SHAM should be almost nontoxic to phytopathogens and have no significant effect on control efficacy of fungicides. However, this study showed that the average effective concentration for 50% inhibition (EC50) of mycelial growth values of SHAM were 97.5 and 401.4 μg/ml for Sclerotinia sclerotiorum and Botrytis cinerea, respectively. EC50 values of the three QoI fungicides azoxystrobin, kresoxim-methyl, and trifloxystrobin in the presence of SHAM at 20 and 80 μg/ml for S. sclerotiorum and B. cinerea, respectively, declined by 52.7 to 78.1% compared with those without SHAM. For the dicarboximide fungicide dimethachlone, the average EC50 values in the presence of SHAM declined by 18.2% (P = 0.008) for S. sclerotiorum and 35.9% (P = 0.012) for B. cinerea. Pot experiments showed that SHAM increased control efficacy of the three QoI fungicides against the two pathogens by 43 to 83%. For dimethachlone, SHAM increased control efficacy by 134% for S. sclerotiorum and 86% for B. cinerea. Biochemical studies showed that SHAM significantly inhibited peroxidase activity (P = 0.024) of B. cinerea and esterase activity (P = 0.015) of S. sclerotiorum. The strong inhibitions of SHAM per se on mycelial growth of B. cinerea and S. sclerotiorum and significant influences on the sensitivity of the two pathogens to both the QoI fungicides and dimethachlone as well as inhibitions on peroxidase and esterase indicate that SHAM should not be added in the in vitro assay of sensitivity to the QoI fungicides.


2011 ◽  
Vol 101 (9) ◽  
pp. 1104-1111 ◽  
Author(s):  
Yang Bi ◽  
Xiaolan Cui ◽  
Xiaohong Lu ◽  
Meng Cai ◽  
Xili Liu ◽  
...  

Laboratory experiments were conducted to determine the baseline sensitivity of Phytophthora capsici and its risk for developing resistance to zoxamide. In total, 158 P. capsici isolates were collected from China. All 158 isolates were sensitive to zoxamide, with effective concentrations for 50% inhibition of mycelial growth of 0.023 to 0.383 μg/ml and a mean of 0.114 μg/ml, which showed a skewed unimodal distribution. Zoxamide-resistant mutants of P. capsici were obtained by either treating mycelial culture and zoospores with ultraviolet irradiation or adapting a culture on zoxamide-amended plates. The frequency of resistance selection averaged 1.8 × 10–7. Resistant isolates were also derived by selfing or crossing two sexually compatible isolates, resulting in a mean selection frequency of 0.47. The resistance factor (RF) for zoxamide was 25 to 100 in P. capsici mutants. Through 10 culture transfers, the mutants maintained high levels of RF (between 14 and 134) and had almost equal fitness as their wild-type parents in mycelial growth, sporulation, and virulence. There was no cross resistance between zoxamide and either flumorph, metalaxyl, azoxystrobin, or etridiazole. Based on the results above, P. capsici can develop resistance to zoxamide, and the risk is predicted to be moderate in nature.


Sign in / Sign up

Export Citation Format

Share Document