scholarly journals First Report of Neofusicoccum parvum Associated with Grapevine Trunk Diseases in Croatia

Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1656-1656 ◽  
Author(s):  
J. Kaliternam ◽  
T. Milicevic ◽  
D. Bencic ◽  
B. Duralija

In September 2010, during survey of diseased grapevines (Vitis vinifera L.) in vineyards at localities Zmajevac (BZ), Orahovica (SO), Cilipi (KC), and Novalja (PN), symptoms characteristic of grapevine trunk diseases (GTD) (3) were observed, showing on cross-sectioned cordons and trunks as brown, wedge-shaped perennial cankers and/or dark streaking of the wood. In Croatia, these symptoms were traditionally associated with Eutypa Tul. & C.Tul. and with fungi from Diaporthaceae (2). From affected grapevines (cvs. Grasevina, Pinot bijeli, Malvazija dubrovacka, and Gegic), samples of symptomatic cordons and trunks were collected (n ≥ 35). To isolate the causal agents from the samples, woodchips of symptomatic tissue, surface-sterilized in 2% sodium hypochlorite for 2 min, were placed on potato dextrose agar amended with streptomycin sulphate (50 μg/ml) and incubated for 7 days at 25°C in darkness. A percentage of samples (72, 15, 27, and 54% from BZ, SO, KC, and PN, respectively) yielded fungal colonies with abundant aerial mycelium, initially white, but turning olivaceous grey after 5 days. From these colonies, monohyphal isolates were obtained and pycnidial formation stimulated by cultivation on 2% water agar with stems of plant species Foeniculum vulgare Mill. at 25°C under diffuse light for 3 weeks. Pycnidia contained conidia that were hyaline, unicellular, ellipsoid with round apices and truncated bases, and thin walled with smooth surface. Dimensions of conidia (n ≥ 50) were (12.8) 15.3 ± 1.4 (17.6) × (5.4) 6.3 ± 0.8 (7.6) μm, with length/width ratio (2.0) 2.5 ± 0.5 (3.2). Based on morphological data, species Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips was suspected (1). For molecular identification, isolates BZ330, SO334, KC342, and PN121 were used for PCR to amplify internal transcribed spacer region and partial translation elongation factor 1-alpha gene, using primers ITS5/ITS4 and EF1-728F/EF1-986R, respectively. Obtained sequences were shown to be identical between the four isolates (GenBank: KF296318, KF296319) and when compared with sequences for reference N. parvum isolate CMW9080 (AY236942, AY236887) they showed >99% homology, confirming the isolates as species N. parvum. Pathogenicity tests were done by inoculation of detached green shoots (GS) and lignified canes (LC) (n = 5) of grapevine cv. Skrlet by either mycelial plugs of the same four isolates, or sterile agar plugs for the controls. Inoculated GS were kept in flasks with sterile water in a glasshouse for 10 days, and LC in humid dark chambers for 30 days, at 25°C. Resulting vascular necrosis measured 62 to 81 mm (GS) and 215 to 246 mm (LC), but was absent on controls. Koch's postulates were satisfied by successful reisolation of N. parvum only from plants inoculated with mycelial plugs. N. parvum has been recognized as a serious grapevine pathogen, causing similar symptoms worldwide (3). To our knowledge, this is the first report of N. parvum associated with GTD in Croatia, and due to its relatively high incidence at surveyed localities, it could present considerable threat, particularly for neighboring vine growing regions. Diplodia seriata De Not., a weak pathogen (3), was also identified from a percentage of samples in this survey. References: (1) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (2) J. Kaliterna et al. Arh. Hig. Rada Toksikol. 63:471, 2012. (3) J. R. Urbez-Torres. Phytopathol. Mediterr. 50(Suppl.):S5, 2011.

Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 490-490 ◽  
Author(s):  
G. A. Díaz ◽  
D. Prehn ◽  
B. A. Latorre

Trunk diseases (TD) of grapevines (Vitis vinifera L.) have increased considerably in Chile with an incidence of more than 25% found in ≥7-year-old vineyards. Only species of Botryosphaeriaceae, Phaeoacremonium, and Phaeomoniella were associated with TD in Chile (1,2). From 2009 to 2010, isolations were made from the grapevines ‘Cabernet Sauvignon’, ‘Carmenere’, ‘Flame Seedless’, and ‘Pinot Noir’ collected in central Chile (33°27′ to 34°39′S, 71°17′ to 71°33′W). These grapevines showed cankers and vascular necrosis of trunks, arms, and spurs along with a general decline and dieback. Isolations were performed in potato dextrose agar (PDA) plus 0.005% tetracycline, 0.01% streptomycin, and 0.1% Igepal CO-630 (Sigma-Aldrich, St. Louis, MO), for 14 days at 20°C. On the basis of colony morphology and conidia production, two Libertella-like species were obtained in 26 (7.8%) of 335 trunk samples. On the basis of the internal transcribed spacer region (ITS4 and ITS5) of rDNA, Cryptovalsa ampelina (Nitschke) Fuckel (GenBank Accession Nos. HQ694976 and HQ694977), and Eutypella leprosa (Persoon) Berlese (HQ694974 and HQ694975) were identified, showing 98 to 100% similarity with the sequences of C. ampelina (GQ293913) and E. leprosa (AJ302463.1). C. ampelina produced white-to-creamy, smooth colonies with a creamy underside. Colonies of E. leprosa were white-to-gray with a white underside. Orange conidial masses were exuded after 30 days at 20°C. Conidia on PDA (n = 20) were unicellular, hyaline, filiform, slightly curved, and (19.8) 23.4 ± 2.6 (28.3) × (1.1) 1.4 ± 0.2 (1.8) μm and (19.2) 23.9 ± 3.0 (27.6) × (1.0) 1.2 ± 0.1 (1.5) μm for E. leprosa and C. ampelina, respectively. Stromatic perithecia of C. ampelina, embedded in the bark, were observed in dead pruning residues of infected vines (4). Pathogenicity tests were conducted with two isolates of each species, on 30-day-old ‘Carmenere’, rooted in vitro (n = 12), that were inoculated by placing a 5-mm agar plug on the surface of the propagation medium. Additionally, 15 cm long pieces (n = 5) of 1-year-old canes from ‘Carmenere’, ‘Chardonnay’, and ‘Red Globe’ were inoculated by placing a 5-mm agar plug underneath a cut aseptically made in each cane. An equal number of noninoculated plants and canes, but treated with sterile agar plugs, were used as controls. Leaf number (LN), shoot length (SL), and root length (RL) were assessed on plants in vitro after 28 days at 20°C. The extent of vascular discoloration (VD) obtained in canes was determined after 45 days in humid chambers at 20°C. One-way analysis of variance was performed and mean differences were studied by Tukey's test. C. ampelina and E. leprosa significantly (P < 0.05) reduced the LN, SL, and RL relative to the control plants. They also caused a VD of 10.1, 11.6, and 9.8 mm and 11.2, 13.4, and 10.0 mm in ‘Carmenere’, ‘Chardonnay’, and ‘Red Globe’, respectively. No symptoms were observed on the control canes. C. ampelina (100%) and E. leprosa (75%) were reisolated from inoculated plants and canes. To our knowledge, this is the first report of C. ampelina and E. leprosa on grapevines in Chile. However, their relative importance as causal agent of trunk disease remains to be determined. C. ampelina and E. leprosa have been associated with grapevine cankers in the United States and Spain (3,4). References: (1) J. Auger et al. Plant Dis. 88:1285, 2004. (2) J. Auger et al. Plant Dis. 88:1286, 2004. (3) M. T. Martin et al. Plant Dis. 93:545, 2009. (4) F. P. Trouillas et al. Mycologia 102:319, 2010.


Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 1032-1032 ◽  
Author(s):  
G. A. Díaz ◽  
D. Prehn ◽  
X. Besoain ◽  
E. R. Chávez ◽  
B. A. Latorre

During 2009 and 2010, a survey (n = 520) of diseased grapevines (Vitis vinifera L.) was done in vineyards located in Maipo and Colchagua valleys (33°43′ to 34°36′S) in Chile. Symptoms of trunk diseases (TD) were observed on >10-year-old grapevines and consisted of short internodes, dead spurs and arms, and dieback. In cross sections, diseased arms and trunks exhibited brown, V-shaped cankers of hard consistency. Collected canker samples from cvs. Cabernet Sauvignon, Carménère, Red Globe, Syrah, and Thompson Seedless were surface sterilized in 75% ethanol for 45 s and plated onto potato dextrose agar modified with 0.005% tetracycline, 0.01% streptomycin, and 0.1% Igepal CO-630 (MPDA; Sigma-Aldrich, St. Louis, MO) for 7 days at 20°C. White-to-gray colonies with aerial mycelium growth turned dark gray after 3 to 5 days and tentatively identified as Botryosphaeriaceae. Hyphal tips of these colonies were transferred to MPDA and kept at 20°C with continuous light. After 30 days, colonies developed black, globose pycnidia with unicellular, hyaline, ellipsoidal, densely granulate, externally smooth, and thin-walled conidia that measured (16.3) 19.3 ± 2.3 (25.9) × (5.8) 7.4 ± 0.8 (9.2) μm (n = 20). Morphologically, these isolates were identified as Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips (2). Nucleotide BLAST analysis of the region ITS1-5.8S-ITS2 of rDNA of N. parvum isolates HMUC-104 and HMUC-105 (GenBank Accession Nos. JF273631 and JF273632) were amplified with ITS4 and ITS5 primers and revealed >99% similarity with the sequence of reference isolate (EU833984). Pathogenicity tests were conducted using isolates HMUC-104 and HMUC-105 on 30-day-old Carménère grapevines (n = 8) rooted in vitro by placing a 3- to 5-mm mycelial plug on the surface of the propagation medium. Additionally, detached green shoots (GS) (n = 5) and dormant canes (DC) (n = 6) 15-cm long were inoculated by placing a 3- to 5-mm mycelial plug underneath a cut aseptically made in the cortex. The GS and DC were placed in humidity chambers at 20 and 25°C, respectively. For controls, an equal number of rooted vines, in vitro vines, GS, and DC were treated with sterile agar plugs. Leaf number (LN), shoot length (SL), and root length (RL) were assessed on rooted plants in vitro after 30 days at 20°C. The extent of vascular discoloration (VD) of GS and DC were determined 15 and 45 days, respectively. N. parvum significantly (P < 0.05) reduced the LN, SL, and RL relative to the control plants. The length of VD varied from 54.86 to 55.39 mm and 14.8 to 15.48 mm in inoculated GS and DC, respectively. No VD symptoms were observed on the controls. N. parvum was reisolated from 100% of the inoculated in vitro plants, GS, and DC, completing Koch's postulates. N. parvum has been documented as a canker pathogen on V. vinifera and is known to contribute to the decline of grapevines. To our knowledge, this is the first report of N. parvum causing bot canker on grapevines in Chile, but has previously been reported in Australia, Spain, and the United States. Of 520 diseased plants in this study, 10 to 15% prevalence was estimated for TD and almost 2% prevalence was associated to N. parvum. Other Botryosphaeriaceae spp. were isolated with N. parvum from grapevine TD in Chilean vineyards (1,3,4). References: (1) J. Auger et al. Plant Dis. 88:1286, 2004. (2) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (3) B. A. Latorre et al. Phytopathology 76:1112, 1986. (4) A. Morales et al. Phytopathol. Mediterr. 49:112, 2010.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 772-772 ◽  
Author(s):  
J. R. Úrbez-Torres ◽  
W. D. Gubler ◽  
J. Luque

Grapevine decline symptoms in California include dead spurs and cordon and trunk dieback due to canker formation in the vascular tissue. Seven Botryosphaeria spp. are known to be associated with grapevine cankers in California, viz. Botryosphaeria australis, B. dothidea, B. lutea, B. obtusa, B. parva, B. rhodina, and B. stevensii (3). Recently, B. iberica and B. viticola also were isolated from grapevine cankers in a field survey that was conducted throughout California. Identification was based on morphological comparisons along with DNA analyses with previously identified isolates from Spain (1,2): B. iberica (CBS115035, ex-type) and B. viticola (CBS117006 and CBS117009, ex-type). DNA sequences of the rDNA internal transcribed spacer region (ITSI-5.8S-ITS2), part of the β-tubulin gene (BT2), and part of the translation elongation factor 1-α gene (EF1-α) from B. iberica and B. viticola isolates from California were amplified using primers ITS4/ITS5, Bt2a/Bt2b, and EF-728F/EF-986R, respectively. All DNA sequences of B. iberica and B. viticola from California showed 99 to 100% homology with those previously identified and deposited in GenBank. B. iberica, isolated from grapevine cankers from San Luis Obispo County (central coast), formed colonies on potato dextrose agar (PDA) that were dark green with aerial mycelium, optimum growth at 20 to 25°C, and formed pycnidia after 15 days of incubation at 25°C. Conidia were brown, one-septate, oblong to ovoid with a rounded apex, and measured (20.1-) 22.5 to 23.5 (-27.1) × (8.1) 9.3 to 9.8 (-11.2) μm, length/width ratio = 2.4 (n = 60). B. viticola, isolated from grapevine cankers in Sonoma (north coast), San Luis Obispo, Santa Barbara (south coast), Riverside (southern California), and Yolo (Sacramento Valley) counties, formed colonies on PDA that were dark green to grayish with aerial mycelium, optimum growth at 25°C, and formed pycnidia after 2 weeks. Conidia were brown, one-septate, oval to oblong, and measured (16.6-) 19.3 to 20.3 (-23.5) × (8.1) 9.3 to 9.6 (-11.1) μm, length/width ratio = 2.1 (n = 60). Two isolates of each species were used to complete pathogenicity tests (B. iberica: ATCC MYA-4110, ATCC MYA-4111; B. viticola: ATCC MYA-4115, ATCC MYA-4116). Ten fresh pruning wounds on 15-year-old cv. Zinfandel vines were inoculated per isolate using 50 μl of a 5 × 106 conidia per ml suspension. Twenty control pruning wounds were inoculated with the same amount of sterile water. Twelve months after inoculation, all wood inoculated with B. iberica and B. viticola showed internal necrosis extending 35 to 50 and 30 to 35 mm from the point of inoculation, respectively. Necrosis and extent of vascular discoloration in infected wounds was significantly greater (P < 0.05) than in control inoculations (6.5 mm). B. iberica and B. viticola were reisolated from the necrotic region surrounding all inoculation sites. Representative isolates of B. iberica and B. viticola from California were deposited at the American Type Culture Collection (B. iberica: MYA-4110, MYA-4111; B. viticola: MYA-4112 to MYA-4116). Sequences from the studied DNA regions of all isolates were deposited at GenBank. To our knowledge, this is the first report implicating either species as a cause of grapevine decline in California and B. iberica as a pathogen of Vitis vinifera anywhere in the world. References: (1) J. Luque et al. Mycologia 97:1111, 2005. (2) A. J. L. Phillips et al. Mycologia 97:513, 2005. (3) J. R. Úrbez-Torres et al. Plant Dis. 90:1490, 2006.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 641-641 ◽  
Author(s):  
S. B. Li ◽  
J. Z. Li ◽  
S. C. Li ◽  
Z. H. Lu ◽  
J. H. Wang ◽  
...  

Cupressus funebris Endl. (Chinese weeping cypress) is native to southwestern and central China. In June 2008, blighted shoots of Chinese weeping cypress trees were observed in Yunnan Province (southwestern China). Symptomatic trees were located in an ornamental planting established approximately 8 to 12 years ago. Additional samples were collected from 11 locations in the provinces of Sichuan, Yunnan, Guizhou, and Chongqing. Disease symptoms included yellowing and wilting of leaves on several branches, followed by sudden death within 6 to 8 weeks. Cross sections on trunks and branches revealed darkened zones. Tissue from diseased samples was plated on potato dextrose agar (PDA) and incubated at 25°C. Fungal isolates developed copious, white, aerial mycelium that became dark gray after 4 to 6 days and formed black pycnidia after 25 days. Conidia were hyaline, ellipsoidal to fusiform, externally smooth, thin walled, nonseptate, and measured 12.5 to 18.5 × 4.0 to 6.5 μm. Identity was confirmed by analysis of the rDNA internal transcribed spacer region (ITSI-5.8S-ITS2) and the translation elongation factor 1-alpha (EF1-α). BLAST searches at GenBank showed a high identity with reference sequences (ITS: >99%; EF1-α: 100%). Representative sequences of both regions were deposited in GenBank (ITS: Accession No. FJ842960 and FJ842961; EF1-α: Accession No. GU811148). Morphological and molecular results confirmed this species as Neofusicoccum parvum, reported as the anamorph of Botryosphaeria parva. Pathogenicity tests were conducted by stem inoculation of 2-year-old C. funebris seedlings. Mycelial plugs (4 mm in diameter) of N. parvum from actively growing colonies were applied to same-size bark wounds on the middle point of the stems. Control seedlings were inoculated with sterile PDA plugs. Inoculated and control seedlings (five each) were kept in a greenhouse and watered as needed. After 5 weeks, all C. funebris seedlings showed leaf wilting and dark vascular stem tissue. N. parvum was reisolated from all inoculated, symptomatic tissues, fulfilling Koch's postulates; no symptoms were visible in the control seedlings. N. parvum has previously been reported to cause canker and dieback disease of avocado (3), mango (2), and magenta cherry (Syzygium paniculatum) (1). To our knowledge, this is the first report of N. parvum causing dieback of C. funebris in China. References: (1) R. C. Ploetz et al. Plant Pathol. 58:801, 2009. (2) B. Slippers et al. Mycologia 97:99, 2005. (3) T. Zea-Bonilla et al. Plant Dis. 91:1052, 2007.


Plant Disease ◽  
2021 ◽  
Author(s):  
Salvatore Seddaiu ◽  
Antonietta Mello ◽  
Clizia Sechi ◽  
Anna Cerboneschi ◽  
Benedetto T. Linaldeddu

In autumn 2018, during a study on the pathogens involved in the etiology of chestnut nut rot symptoms observed in three of the main sweet chestnut (Castanea sativa) growing areas in Sardinia (Site 1: 39°56′55”N/09°11′45”E; site 2: 39°58’20”N/09°09′41”E; site 3: 40°52’50”N/09°08’45”E), Gnomoniopsis smithogilvyi was found to be the main causal agent. In addition to G. smithogilvyi, 15 out of 450 nuts processed, yielded on potato dextrose agar (PDA, 39 g/L) at 22°C white colonies with dense aerial mycelium becoming dark grey after 4 to 7 days. Pycnidia were produced within 4 weeks in half-strength PDA incubated at room temperature under natural daylight. The hyaline, ellipsoid to fusiform and aseptate conidia measured 13.4–19.2 × 4.8–7.7 μm (n = 50). All morphological characters matched those reported for Neofusicoccum parvum by Phillips et al. (2013). Identity of isolates was confirmed by DNA sequence analysis of the internal transcribed spacer region (ITS) and part of the translation elongation factor 1-alpha gene (tef1-α). DNA extraction, PCR amplification reactions and DNA sequencing were carried out according to Linaldeddu et al. (2016). In the phylogenetic analysis based on combined ITS and tef1-α gene sequences the N. parvum isolates clustered within two well-supported subclades. In the first subclade (ML bootstrap = 88%) three isolates clustered together with the ex-type culture of N. parvum (CMW9081) while in the second subclade (ML bootstrap = 95%) three isolates clustered together with the ex-type culture of Neofusicoccum algeriense (CBS 137504), a species recently synonymised with N. parvum by Lopes et al. (2016). Sequences of six representative isolates were deposited in GenBank (MK968559–MK968564 and MT010339–MT010344 for ITS and tef1-α, respectively). The pathogenicity of six isolates, belonging to the two haplotypes, was undertaken by inoculating five asymptomatic nuts per isolate. After disinfecting the nut surface with 70% ethanol and removing a piece of shell (5 mm diameter) with a sterile cork borer, the nuts were inoculated with a same-sized agar-mycelium plug cut from the margin of a 5-day-old PDA colony. Ten control nuts were inoculated with a sterile PDA plug applied as described above. Inoculated nuts were kept in thermostat at 22 °C in the dark for 18 days. All nuts inoculated with N. parvum showed light-brown to dark necrosis of kernel associated with loss of tissue consistency. The symptoms were congruent with those observed in nature. All N. parvum isolates were successfully reisolated from all the inoculated nuts, fulfilling Koch’s postulates. No lesions were observed on controls. N. parvum is recognized as an emerging plant pathogen worldwide. In particular, several studies report N. parvum as a growing threat to agricultural and forest ecosystems in the Mediterranean area (Larignon et al., 2015; Manca et al., 2020). This is the first report of N. parvum causing chestnut nut rot in Italy.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287 ◽  
Author(s):  
E. Molina-Gayosso ◽  
H. V. Silva-Rojas ◽  
S. García-Morales ◽  
G. Avila-Quezada

Avocado (Persea americana L.) production for export markets has increased in Mexico during the past 10 years. The production system, however, is affected by several sanitation factors, including diseases. During the spring of 2009, smooth, black, circular spots were noted on the surface of avocado fruit. A study was conducted during the winter of 2010 to ascertain the etiology and identify the fungus associated with black spot symptoms on avocado fruit in orchards of Nuevo Parangaricutiro County (19°25′00″ and 102°07′43″) in Michoacan, Mexico. Several fungal isolates were obtained on potato dextrose agar (PDA) from the margin of lesions on immature fruit. The internal transcribed spacer region (ITS) of the rDNA from representative isolates was sequenced with universal primers ITS5 and ITS4 (2). BLAST searches in GenBank showed 100% similarity of the nucleotide sequences with Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips, GenBank Accession Nos. GU188001 to GU188007 and GU187985 to GU187987. A representative nucleotide sequence of this region was deposited in GenBank under the Accession No. JN203129. Strains of N. parvum produced aerial and compact mycelium on acidified PDA, the anamorph state of Botryosphaeria parva. Mycelium was initially white, turning gradually gray to black. Conidia were one celled, hyaline, ellipsoidal to fusiform, externally smooth, thin walled, nonseptate, with one or two septa with age, and an average length and width of 14.5 (9.5 to 19) × 5.8 (4.0 to 7.2) μm (n = 100). Pathogenicity tests were conducted with six avocado fruit cv. Hass. Fruit were inoculated at three evenly spaced locations on the fruit surface, either by wounding the tissue with a needle that had been dipped in a conidial mass from an 8-day-old monoconidial culture of N. parvum strain CIAD-021-11 or by placing 5 μl of 1 × 106 conidia ml–1 suspension on each inoculation site. Inoculated fruit were maintained in a moist chamber at 25°C for 2 weeks. Black lesions appeared on all wounded sites 2 days postinoculation (dpi) and on unwounded sites 4 dpi. The delay of symptom development was likely due to penetration through the lenticels, which took longer to initiate infection. No symptoms were observed in the control fruit. The pathogen was reisolated from the lesions of all inoculated fruit, thus fulfilling Koch's postulates. The results confirmed the pathogenic potential of this fungus and indicated its possible involvement in the etiology of black spot on avocado fruit. N. parvum is a cosmopolitan, plurivorous pathogen causing disease in several hosts of economic importance, such as grapes and kiwi, as well as causing stem-end rot of avocado fruit in New Zealand (1) and avocado twigs in Spain (3). To our knowledge, this is the first report of N. parvum causing black spots on avocado fruit in Mexico. References: (1) W. F. T. Hartill et al. N.Z.J. Crop Hortic. Sci. 30:249. 2002. (2) T. J. White et al. Page: 315 in: PCR Protocols: A Guide to Methods and Application. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990. (3) T. Zea-Bonilla et al. Plant Dis. 91:1052, 2007.


Plant Disease ◽  
2021 ◽  
Author(s):  
Nathali López-Cardona ◽  
YUDY ALEJANDRA GUEVARA ◽  
Lederson Gañán-Betancur ◽  
Carol Viviana Amaya Gomez

In October 2018, soybean plants displaying elongated black to reddish-brown lesions on stems were observed in a field planted to the cv. BRS Serena in the locality of Puerto López (Meta, Colombia), with 20% incidence of diseased plants. Symptomatic stems were collected from five plants, and small pieces (∼5 mm2) were surface sterilized, plated on potato dextrose agar (PDA) and incubated for 2 weeks at 25°C in darkness. Three fungal isolates with similar morphology were obtained, i.e., by subculturing single hyphal tips, and their colonies on PDA were grayish-white, fluffy, with aerial mycelium, dark colored substrate mycelium, and produced circular black stroma. Pycnidia were globose, black, occurred as clusters, embedded in tissue, erumpent at maturity, with an elongated neck, and often had yellowish conidial cirrus extruding from the ostiole. Alpha conidia were observed for all isolates after 30 days growth on sterile soybean stem pieces (5 cm) on water agar, under 25ºC and 12 h light/12h darkness photoperiod. Alpha conidia (n = 50) measured 6.0 – 7.0 µm (6.4 ± 0.4 µm) × 2.0 – 3.0 µm (2.5± 0.4 µm), were aseptate, hyaline, smooth, ellipsoidal, often biguttulate, with subtruncate base. Beta conidia were not observed. Observed morphological characteristics of these isolates were similar to those reported in Diaporthe spp. by Udayanga et al. (2015). DNA from each fungal isolate was used to sequence the internal transcribed spacer region (ITS), and the translation elongation factor 1-α (TEF1) gene, using the primer pairs ITS5/ITS4 (White et al. 1990) and EF1-728F/EF1- 986R (Carbone & Kohn, 1999), respectively. Results from an NCBI-BLASTn, revealed that the ITS sequences of the three isolates (GenBank accessions MW566593 to MW566595) had 98% (581/584 bp) identity with D. miriciae strain BRIP 54736j (NR_147535.1), whereas the TEF1 sequences (GenBank accessions MW597410 to MW597412) had 97 to 100% (330-339/339 bp) identity with D. ueckerae strain FAU656 (KJ590747). The species Diaporthe miriciae R.G. Shivas, S.M. Thomps. & Y.P. Tan, and Diaporthe ueckerae Udayanga & Castl. are synonymous, with the latter taking the nomenclature priority (Gao et al. 2016). According to a multilocus phylogenetic analysis, by maximum likelihood, the three isolates clustered together in a clade with reference type strains of D. ueckerae (Udayanga et al. 2015). Soybean plants cv. BRS Serena (growth stages V3 to V4) were used to verify the pathogenicity of each isolate using a toothpick inoculation method (Mena et al. 2020). A single toothpick colonized by D. ueckerae was inserted directly into the stem of each plant (10 plants per isolate) approximately 1 cm below the first trifoliate node. Noncolonized sterile toothpicks, inserted in 10 soybean plants served as the non-inoculated control. Plants were arbitrarily distributed inside a glasshouse, and incubated at high relative humidity (>90% HR). After 15 days, inoculated plants showed elongated reddish-brown necrosis at the inoculated sites, that were similar to symptoms observed in the field. Non-inoculated control plants were asymptomatic. Fungal cultures recovered from symptomatic stems were morphologically identical to the original isolates. This is the first report of soybean stem canker caused by D. ueckerae in Colombia. Due to the economic importance of this disease elsewhere (Backman et al. 1985; Mena et al. 2020), further research on disease management strategies to mitigate potential crop losses is warranted.


Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1678-1688 ◽  
Author(s):  
Antonia Carlucci ◽  
Francesca Cibelli ◽  
Francesco Lops ◽  
Maria Luisa Raimondo

Botryosphaeriaceae spp. have a cosmopolitan distribution and a wide range of plant hosts. Over the last 15 years, worldwide, 21 species of this family have been associated with grapevine trunk diseases that cause cankers and dieback on grapevines. Here, we surveyed vineyards of Vitis vinifera ‘Lambrusco’, ‘Sangiovese’, and ‘Montepulciano’ in three areas of the Foggia province (Cerignola, Foggia, and San Severo) in southern Italy. Wood samples from grapevines showing general decline, dieback, cankers, and wood and foliar discoloration yielded 344 fungal isolates identified as Botryosphaeriaceae spp. A phylogenetic study combining internal transcribed spacer and translation elongation factor 1-α sequences of 60 representative isolates identified nine botryosphaeriaceous species: Botryosphaeria dothidea, Diplodia corticola, D. mutila, D. seriata, Dothiorella iberica, Do. sarmentorum, Lasiodiplodia citricola, L. theobromae, and Neofusicoccum parvum. Pathogenicity tests confirmed that all nine species cause canker and dieback of grapevines. However, this is the first report of L. citricola as causal agent of wood cankers and dieback of grapevine. To date, including L. citricola, there are 25 botryosphaeriaceous species associated with V. vinifera worldwide, of which 12 have been reported for grapevines in Italy.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 690-690 ◽  
Author(s):  
M.-C. Fan ◽  
H.-C. Yeh ◽  
C.-F. Hong

Incense trees (Aquilaria sinensis (Lour.) Gilg) belong to a plant family used for alternative medicine in China and the production of wood. In the summer of 2012, at a nursery in Niaosong district, Kaohsiung City, Taiwan, more than 30% of a total of 400 incense trees had dieback symptoms on twigs with leaves attached, leading to eventual death of the entire plant. Symptomatic twigs and trunk pieces from six trees were collected and discolored tissues were excised, surface sterilized in 0.5% sodium hypochlorite solution, rinsed in sterilized distilled water, dried on sterilized filter paper, and then placed in petri dishes containing 2% water agar (WA). The dishes were incubated at room temperature for 1 to 2 days to obtain fungal strains from diseased tissues. The hyphal tips from developing fungal colonies were transferred to potato dextrose agar (PDA, Difco) dishes and placed under UV light (12 h/day) at 30°C. The purified colonies were used as inoculum in the pathogenicity tests. Pathogenicity tests were performed on 2-month-old A. sinensis seedlings, each treatment had three plants. Each plant was wounded by removing bark of the twigs with a disinfected scalpel enough to place a mycelium plug (about 5 × 10 mm2) of 7-day-old fungal isolate on the wound. The inoculated area was wrapped with a wet paper towel and Parafilm. Control plants were treated with PDA plugs. The symptoms described above were observed on inoculated plants 4 to 8 days after inoculation whereas control plants did not show symptoms. Diseased twigs were cut and placed in a moist chamber 21 days after inoculation and conidia oozing from pycnidia were observed. The same fungal pathogen was reisolated from inoculated plants, but not from the control. To identify the pathogen, the fungus was cultured as described above. The colonies were initially white with green to gray aerial mycelium after 5 to 6 days and eventually turned darker. Immature conidia were hyaline and one-celled, but mature conidia were dark brown, two-celled, thin-walled, and oval-shaped with longitudinal striations. The average size of 100 conidia was 25.23 ± 1.97 × 13.09 ± 0.99 μm with a length/width ratio of 1.92. For the molecular identification, the internal transcribed spacer (ITS) region of ribosomal DNA was PCR amplified with primers ITS1 and ITS4 (2) and sequenced. The sequences were deposited in GenBank (Accession No. JX945583) and showed 99% identity to Lasiodiplodia theobromae (HM346871, GQ469929, and HQ315840). Hence, both morphological and molecular characteristics confirmed the pathogen as L. theobromae (Pat.) Griffon & Maubl (1). To the best of our knowledge, this is the first report of L. theobromae causing dieback on Incense tree. This disease threatens tree survival and may decrease the income of growers. References: (1) W. H. Ko et al. Plant Dis. 88:1383, 2004. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, New York, 1990.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 835-835 ◽  
Author(s):  
J. R. Úrbez-Torres ◽  
W. D. Gubler ◽  
H. Peláez ◽  
Y. Santiago ◽  
C. Martín ◽  
...  

Between 2000 and 2004, 176 vineyards were surveyed for disease symptoms throughout the main grapevine-production areas of Bierzo, Cigales, Ribera del Duero, Rueda, and Toro in the Castilla y León region of Spain. Symptoms resembling Eutypa dieback, such as stunted chlorotic shoots, deformed leaves with necrotic areas, and typical wedge-shaped cankers in the wood, were observed in 80% of surveyed vineyards. The second most common disease observed was esca. The mild form of esca, interveinal chlorosis or reddened patterns on the leaves, was observed in 35% of surveyed vineyards. Severe esca symptoms that include sudden defoliation of some or all parts of the vine followed by shriveling of fruit clusters were observed in vineyards during very hot and dry summer periods. Wood from vines with esca was yellowish, soft, and often partially or completely surrounded by necrotic wood. Black vascular streaking in the wood was also observed in some vines with esca. Samples of wood from vines with symptoms of Eutypa dieback or esca were collected from different cultivars (Tempranillo, Cabernet Sauvignon, Mencía, Garnacha, Viura, and Verdejo). Small pieces of symptomatic wood were placed on 4% potato dextrose agar amended with tetracycline hydrochloride (0.01%) (PDA-tet) and incubated at room temperature. Pure cultures were obtained by excising hyphal tips and transferring to PDA-tet. Species of Botryosphaeria were most frequently isolated from wedge-shaped cankers as well as from wood with necrosis or black vascular streaking. Botryosphaeria spp. also were isolated from the soft yellowish wood, however, Fomitiporia punctata, Stereum hirsutum, and Phaeoacremonium spp. were the most common fungi associated with this symptom. On the basis of morphological characteristics in culture (1), three species were isolated (B. obtusa, B. dothidea, and B. parva). Colonies of B. obtusa were green to dark green with moderate aerial mycelium. Pycnidia developed after 6 days and conidia (n = 50) measured 19 to 27 × 9 to 17 μm and were hyaline and light brown, becoming dark brown when mature, mostly aseptate, and rounded in shape. Colonies of B. dothidea were white, becoming dark green with age and with copious aerial mycelium. Pycnidia started to develop after 10 days, and conidia measured 17 to 31 × 4 to 8 μm, were hyaline, aseptate, and fusiform in shape. Colonies of B. parva were similar in appearance to those of B. dothidea but pycnidia developed after 5 weeks. Conidia measured 11 to 21 × 4 to 9 μm, were hyaline when immature, becoming light brown with two septa with age, and ellipsoidal in shape. Identity of the three Botryosphaeria species was confirmed by comparing morphology with growth of the following identified California isolates: B. obtusa (UCD352Mo and UCD666Na), B. dothidea (UCD1066So), and B. parva (UCD642So) and by comparing sequences of the internal transcribed spacer region (ITSI-5.8S-ITS2) rDNA, and a partial sequence of the β-tubulin gene (BT2) of our isolates with those of previously identified and sequenced isolates deposited in GenBank. Sequences of B. obtusa (UCD343Spa, UCD461Spa, UCD468Spa, and UCD621Spa), B. dothidea (UCD303Spa), and B. parva (UCD577Spa and UCD578Spa) were deposited in GenBank. To our knowledge, this is the first report of B. obtusa, B. dothidea, and B. parva on grapevines in the Castilla y León region in Spain. Reference: (1) A. J. L. Phillips. Phytopathol. Mediterr. 41:3, 2002.


Sign in / Sign up

Export Citation Format

Share Document