scholarly journals Quantifying Control Efficacy of Fungicides Commonly Applied for Potato Early Blight Management

Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2821-2824
Author(s):  
S. K. R. Yellareddygari ◽  
Raymond J. Taylor ◽  
Julie S. Pasche ◽  
Neil C. Gudmestad

Early blight is an economically important foliar disease of potato in the United States. Because of the lack of resistant potato cultivars, fungicides are applied extensively to obtain adequate control. To manage early blight, standard protectant fungicides and single-site mode-of-action “specialty” fungicides are applied either alone or incorporated into a fungicide rotation program. Control efficacy at two crop growth stages (tuber initiation/early bulking and late bulking/tuber maturation) and the overall tuber yield response to standard and specialty fungicides were assessed using network metaanalytic models. Control efficacy of fungicides ranged from moderate to very high (>30 to 75%) compared with the nontreated control. For both potato growth stages, specialty fungicides performed better than standard protectant fungicides. Furthermore, control efficacy of both fungicides was higher (3 to 9%) at late bulking and tuber maturation when compared with early bulking crop growth stage. Specialty fungicide programs increased overall tuber yields by 4 and 9% over standard fungicides and nontreated control, respectively. Based on the results, more precise fungicide use recommendations and fungicide programs can be developed for early blight management.

1999 ◽  
Vol 132 (4) ◽  
pp. 417-424 ◽  
Author(s):  
C. M. KNOTT

The response of two cultivars of dry harvest field peas (Pisum sativum), Solara and Bohatyr, to irrigation at different growth stages was studied on light soils overlying sand in Nottinghamshire, England in 1990, when the spring was particularly dry, in 1991 which had a dry spring and summer and in contrast, 1992, when rainfall was greater compared with the long-term (40 year) mean.Solara, short haulmed and semi-leafless was more sensitive to drought than the tall conventional-leaved cultivar Bohatyr and gave a greater yield response to irrigation, particularly at the vegetative growth stage in the first two dry years 1990 and 1991, of 108% and 55% respectively, compared with unirrigated plots. Bohatyr was less sensitive to the timing of single applications.In all years, peas irrigated throughout on several occasions produced the highest yields, but this was the least efficient use of water.


2003 ◽  
Vol 56 ◽  
pp. 246-250 ◽  
Author(s):  
T. Armour ◽  
S.L.H. Viljanen-Rollinson ◽  
S.F. Chng ◽  
R.C. Butler ◽  
M.G. Cromey ◽  
...  

Speckled leaf blotch (SLB) a foliar disease of winter wheat caused by Septoria tritici (teleomorph Mycosphaerella graminicola) can cause significant yield losses Wheat crops are at greatest risk during stem extension when the final three leaves emerge in close proximity to infected leaves lower in the canopy Winter wheat cv Consort was sown in May 2002 to test a model that links development of SLB in the field to weather events and to compare disease severity between plots treated with fungicide applied at three different crop growth stages Generally quite low disease levels were experienced associated with a small number of likely infection events This meant that the top three leaves were infected after they were fully emerged and SLB severity was low as there was little time for secondary cycles to occur before the leaves senesced Despite low disease severity there was a significant yield response to applied fungicide increasing with the number of applications The model requires some improvement


Author(s):  
Abbas Saidi ◽  
Zahra Hajibarat

Abstract Background Potato is one of the most important food crops worldwide, contributing key nutrients to the human diet. Plant hormones act as vital switchers in the regulation of various aspects of developmental and growth stages in potato. Due to the broad impacts of hormones on many developmental processes, their role in potato growth and developmental stages has been investigated. Main body of the abstract This review presents a description of hormonal basic pathways, various interconnections between hormonal network and reciprocal relationships, and clarification of molecular events underlying potato growth. In the last decade, new findings have emerged regarding their function during sprout development, vegetative growth, tuber initiation, tuber development, and maturation in potato. Hormones can control the regulation of various aspects of growth and development in potato, either individually or in combination with other hormones. The molecular characterization of interplay between cytokinins (CKs), abscisic acid (ABA), and auxin and/or gibberellins (GAs) during tuber formation requires further undertaking. Recently, new evidences regarding the relative functions of hormones during various stages and an intricate network of several hormones controlling potato tuber formation are emerging. Although some aspects of their functions are widely covered, remarkable breaks in our knowledge and insights yet exist in the regulation of hormonal networks and their interactions during different stages of growth and various aspects of tuber formation. Short conclusion The present review focuses on the relative roles of hormones during various developmental stages with a view to recognize their mechanisms of function in potato tuber development. For better insight, relevant evidences available on hormonal interaction during tuber development in other species are also described. We predict that the present review highlights some of the conceptual developments in the interplay of hormones and their associated downstream events influencing tuber formation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fuqiang Li ◽  
Haoliang Deng ◽  
Yucai Wang ◽  
Xuan Li ◽  
Xietian Chen ◽  
...  

AbstractThe effects of the amount and timing of regulated deficit drip irrigation under plastic film on potato (‘Qingshu 168’) growth, photosynthesis, yield, water use efficiency, and quality were examined from 2017 to 2019 in cold and arid northwestern China. In the four stages of potato growth (seedling, tuber initiation, tuber bulking, starch accumulation), eight treatments were designed, with a mild deficit was in treatments WD1 (seedling), WD2 (tuber initiation), WD3 (tuber bulking), and WD4 (starch accumulation); and a moderate deficit in WD5 (seedling), WD6 (tuber initiation), WD7 (tuber bulking), and WD8 (starch accumulation). The net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly under water deficit in the tuber formation and starch accumulation stages. Although water deficit reduced potato yields, a mild deficit in the seedling stage resulted in the highest yield and water use efficiency at 43,961.91 kg ha−1 and 8.67 kg m−3, respectively. The highest overall quality was in potatoes subjected to mild and moderate water deficit in the seedling stage. Principal component analysis identified mild water stress in the seedling stage as the optimum regulated deficit irrigation regime. The results of this study provide theoretical and technical references for efficient water-saving cultivation and industrialization of potato in northwestern China.


Author(s):  
James T. Vogt ◽  
David R. Coyle ◽  
David Jenkins ◽  
Chris Barnes ◽  
Christopher Crowe ◽  
...  

Abstract Callery pear (Pyrus calleryana Decne.) is rapidly spreading in the United States, gaining attention in the last two decades as a serious invasive pest. Recommended control methods include foliar, basal bark, cut stump, and hack-and-squirt application of herbicides, but there are few published studies with replicated data on efficacy. Four readily available herbicidal active ingredients and a combination of two active ingredients were tested for control efficacy against P. calleryana in old-field areas and loblolly pine (Pinus taeda L.) understory. Basal bark applications (triclopyr, triclopyr + aminopyralid), foliar applications (glyphosate, imazapyr), and a soil application (hexazinone) effectively killed P. calleryana with the exception of hexazinone at one site, where rainfall may not have been optimal. Foliar application of glyphosate provided the most consistent control. Our results demonstrate efficacy of registered herbicide formulations for P. calleryana control in two geographic locations and two habitat types. The need for development of integrated pest management programs for P. calleryana is discussed.


Inventions ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 42
Author(s):  
Worasit Sangjan ◽  
Arron H. Carter ◽  
Michael O. Pumphrey ◽  
Vadim Jitkov ◽  
Sindhuja Sankaran

Sensor applications for plant phenotyping can advance and strengthen crop breeding programs. One of the powerful sensing options is the automated sensor system, which can be customized and applied for plant science research. The system can provide high spatial and temporal resolution data to delineate crop interaction with weather changes in a diverse environment. Such a system can be integrated with the internet to enable the internet of things (IoT)-based sensor system development for real-time crop monitoring and management. In this study, the Raspberry Pi-based sensor (imaging) system was fabricated and integrated with a microclimate sensor to evaluate crop growth in a spring wheat breeding trial for automated phenotyping applications. Such an in-field sensor system will increase the reproducibility of measurements and improve the selection efficiency by investigating dynamic crop responses as well as identifying key growth stages (e.g., heading), assisting in the development of high-performing crop varieties. In the low-cost system developed here-in, a Raspberry Pi computer and multiple cameras (RGB and multispectral) were the main components. The system was programmed to automatically capture and manage the crop image data at user-defined time points throughout the season. The acquired images were suitable for extracting quantifiable plant traits, and the images were automatically processed through a Python script (an open-source programming language) to extract vegetation indices, representing crop growth and overall health. Ongoing efforts are conducted towards integrating the sensor system for real-time data monitoring via the internet that will allow plant breeders to monitor multiple trials for timely crop management and decision making.


Sign in / Sign up

Export Citation Format

Share Document