scholarly journals First report of internal black rot on Carica papaya fruit caused by Fusarium sulawesiense in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Run Hua Yi ◽  
Ting Lian ◽  
Jun Jie Su ◽  
Jing Chen

Papaya (Carica papaya L.) is a tropical fruit consumed worldwide due to its nutritional, medicinal and pharmacological properties. In China, papaya was widely planted in Guangdong, Guangxi, Hainan, Yunnan, Fujian and Taiwan provinces. From September to December in 2015-2020, fruit with internal black rot disease was observed in papaya plantation in Xuwen, Guangdong province (N20°20’9”; E110°14’45”), approximately 5% fruits on about 85% trees were infected every year. The infected fruits showed the symptom of ‘false-ripening’ and the pericarp color changed from green to yellow earlier than that of normal fruits. In the cavity of diseased fruits, the sarcocarp black rotted and conspicuous mycelia were observed. Mycelia and infected tissues from symptomatic fruits were picked up, placed on potato dextrose agar (PDA) with 50mg/L ampicillin and incubated at 25± 2 ℃ in the dark. The fungus was purified by spore dilution plate method. Fast-growing colonies with dense, floccose, cottony mycelium were initially white gradually becoming buff brown. Macroconidia were falcate, 3-5 septa with foot-shaped cell and 10.35-41.50 (av. 25.41±6.82) ×1.90-5.95 (av. 3.67±0.85) µm (n>140) in size after 7 days of incubation on carnation leaf agar (CLA). There were scarce microconidia. Chlamydospores were intercalary, solitary or in chains, globose or irregular, hyaline to light brown. The morphological characteristics of the fungus were similar to that of Fusarium sulawesiense (Maryani et al. 2019). The internal transcribed spacer region (ITS) (KU881904 and KY436233), translation elongation factor 1-alpha (tef1) (KU894408 and KY436232), and RNA polymerase second largest subunit (rpb2) (KU894409 and KY436231) were sequenced from two isolates to cofirm species identification. Blast analysis in the FUSARIUM-ID and the NCBI databases revealed above 99 to 100% identity match with the F. sulawesiense strains NRRL34056, NRRL34059, NRRL34004 and NRRL43730 (Xia et al 2019). Maximum likelihood (ML) analysis and Bayesian inference (BI) based on the concatenated sequences using RAxML v.1.0.0 and MrBayes v. 3.2.1 software revealed that the isolates were resolved in the same clade with the F. sulawesiense strains. Thus, the fungus was identified as F. sulawesiense based on morphological characteristics and molecular criteria. To confirm pathogenicity, five healthy fruits were injected with 200 μl of spore suspension (approximately 104 spores/ml) in the field and laboratory, and isovolumetric sterile water served as control. Each fruit was sealed with a plastic bag and kept at natural temperature (about 25-30 ℃). All the inoculated fruits developed typical symptoms after 30 days in the field and 15 days in the laboratory, whereas no symptoms were observed on the control fruits. F. sulawesiense was reisolated from inoculated fruits, but not from non-inoculated fruits. F. sulawesiense displayed a broad host which included Oryza sativa, Musa nana, Citrus reticulata, and Colocasia esculenta etc. in China (Wang et al. 2019). To our knowledge, this is the first report of F. sulawesiense causing internal black rot on papaya fruit. This work is important for papaya growers to prevent this disease in time.

Plant Disease ◽  
2021 ◽  
Author(s):  
Nathali López-Cardona ◽  
YUDY ALEJANDRA GUEVARA ◽  
Lederson Gañán-Betancur ◽  
Carol Viviana Amaya Gomez

In October 2018, soybean plants displaying elongated black to reddish-brown lesions on stems were observed in a field planted to the cv. BRS Serena in the locality of Puerto López (Meta, Colombia), with 20% incidence of diseased plants. Symptomatic stems were collected from five plants, and small pieces (∼5 mm2) were surface sterilized, plated on potato dextrose agar (PDA) and incubated for 2 weeks at 25°C in darkness. Three fungal isolates with similar morphology were obtained, i.e., by subculturing single hyphal tips, and their colonies on PDA were grayish-white, fluffy, with aerial mycelium, dark colored substrate mycelium, and produced circular black stroma. Pycnidia were globose, black, occurred as clusters, embedded in tissue, erumpent at maturity, with an elongated neck, and often had yellowish conidial cirrus extruding from the ostiole. Alpha conidia were observed for all isolates after 30 days growth on sterile soybean stem pieces (5 cm) on water agar, under 25ºC and 12 h light/12h darkness photoperiod. Alpha conidia (n = 50) measured 6.0 – 7.0 µm (6.4 ± 0.4 µm) × 2.0 – 3.0 µm (2.5± 0.4 µm), were aseptate, hyaline, smooth, ellipsoidal, often biguttulate, with subtruncate base. Beta conidia were not observed. Observed morphological characteristics of these isolates were similar to those reported in Diaporthe spp. by Udayanga et al. (2015). DNA from each fungal isolate was used to sequence the internal transcribed spacer region (ITS), and the translation elongation factor 1-α (TEF1) gene, using the primer pairs ITS5/ITS4 (White et al. 1990) and EF1-728F/EF1- 986R (Carbone & Kohn, 1999), respectively. Results from an NCBI-BLASTn, revealed that the ITS sequences of the three isolates (GenBank accessions MW566593 to MW566595) had 98% (581/584 bp) identity with D. miriciae strain BRIP 54736j (NR_147535.1), whereas the TEF1 sequences (GenBank accessions MW597410 to MW597412) had 97 to 100% (330-339/339 bp) identity with D. ueckerae strain FAU656 (KJ590747). The species Diaporthe miriciae R.G. Shivas, S.M. Thomps. & Y.P. Tan, and Diaporthe ueckerae Udayanga & Castl. are synonymous, with the latter taking the nomenclature priority (Gao et al. 2016). According to a multilocus phylogenetic analysis, by maximum likelihood, the three isolates clustered together in a clade with reference type strains of D. ueckerae (Udayanga et al. 2015). Soybean plants cv. BRS Serena (growth stages V3 to V4) were used to verify the pathogenicity of each isolate using a toothpick inoculation method (Mena et al. 2020). A single toothpick colonized by D. ueckerae was inserted directly into the stem of each plant (10 plants per isolate) approximately 1 cm below the first trifoliate node. Noncolonized sterile toothpicks, inserted in 10 soybean plants served as the non-inoculated control. Plants were arbitrarily distributed inside a glasshouse, and incubated at high relative humidity (>90% HR). After 15 days, inoculated plants showed elongated reddish-brown necrosis at the inoculated sites, that were similar to symptoms observed in the field. Non-inoculated control plants were asymptomatic. Fungal cultures recovered from symptomatic stems were morphologically identical to the original isolates. This is the first report of soybean stem canker caused by D. ueckerae in Colombia. Due to the economic importance of this disease elsewhere (Backman et al. 1985; Mena et al. 2020), further research on disease management strategies to mitigate potential crop losses is warranted.


Plant Disease ◽  
2021 ◽  
Author(s):  
Bo Xia ◽  
Yue Liang ◽  
Jianzhong Hu ◽  
Xiaoling Yan ◽  
Liqiang Yin ◽  
...  

Sea buckthorn (Hippophae rhamnoides) is an important deciduous shrub for fruit and ecological restoration in arid and semi-arid regions of China. Twelve Chinese and Russian cultivars (cv. Shenqiuhong, eshi01, ... eshi11) were planted about 1.6 acre area in a seedling nursery, located in Qingyang City of Gansu province in northwest China, where high mortality (more than 70%) of sea buckthorn was observed in late July 2019. Symptoms consisted of massive chlorosis, drooping leaves and dried-up stems on 5-year-old trees. Pieces of tree roots and stems with irregular light-brown discoloration in the xylem vessels were selected. Small pieces of discolored tissue were surface disinfested (1 min in 1% sodium hypochlorite, followed by three rinses with sterile distilled water), air-dried, and placed on potato dextrose agar (PDA) medium for 5 days at 25°C in the dark. A fungus was consistently isolated from both diseased roots and stems tissues. Colonies on PDA grew rapidly. Dense mycelia were pinky-white initially, and became carmine red color with age on the undersurface of the plate. Macroconidia were moderately curved, 3 to 5 marked septa, hyaline, thick walled, and measuring 27.8± 3.6 µm × 4.8 ± 0.5 µm (n = 30). Microconidia were abundant, pear-shaped, ellipsoid to fusoid, often with a papilla at the base, and 8.4 ± 2.2 µm ×3.1 ± 0.3 µm (n = 30). Genomic DNA was extracted for amplification and sequencing of the internal transcribed spacer region (ITS1 and ITS4 primers) (White et al. 1990) of the ribosomal DNA (Accession Nos. MN160235 to MN160238) and translation elongation factor-1 alpha (EF1 and EF2 primers, accession Nos. MN429075 to MN429078) (O’Donnell et al. 1998). The sequences revealed 99% similarity to the sequences of the ITS (AY188917), and 100% identity with EF1-α (JF740808) regions of Fusarium sporotrichioides. Based on morphological and molecular characteristics, the fungus was identified as F. sporotrichioides (Leslie and Summerell 2006). Koch’s postulates were fulfilled on healthy, potted 1-year-old sea buckthorn seedings using two isolates in a greenhouse at 25 °C, 90% relative humidity, and 12-hour light/dark photoperiod. Ten potted seedings were inoculated on the stems by placing a 5-mm-diameter mycelial plug (5-day-old PDA cultures for each isolate) into the surface of a wound created with a needle, and the inoculation sites were covered with Parafilm to maintain moisture. Ten seedings were inoculated with PDA plugs as controls. Seven to ten days after inoculation, typical symptoms of dark-brown necrotic lesions on chlorotic leaf margins were observed. About 2 weeks after inoculation, the inoculated stems were gradually dry up, accompanied by withering and fallen leaves. Control plants remained asymptomatic. Pathogens were successfully isolated from the inoculated stems again, exhibiting morphological characteristics identical to those of F. sporotrichioides. Previous papers reported F. sporotrichioides as a common pathogen caused lavender wilt (Cosic et al. 2012), foliar spots on forage corn (Moya-Elizondo et al. 2013) and maize ear rot (Wang et al. 2019). To our knowledge, this is the first report of sea buckthorn stem wilt caused by F. sporotrichioides on several Chinese and Russian cultivars in Gansu province of China. In Heilongjiang province, the same disease was reported in 2010 (Song et al. 2010), nearly 30 longitudes away from Gansu province. Therefore, this disease appears to be a serious risk for future sea buckthorn production.


Plant Disease ◽  
2009 ◽  
Vol 93 (7) ◽  
pp. 764-764 ◽  
Author(s):  
Y. Ko ◽  
C. W. Liu ◽  
C. Y. Chen ◽  
S. Maruthasalam ◽  
C. H. Lin

Mango (Mangifera indica L.) is grown on approximately 20,000 ha in Taiwan. It is an economically important crop and the income of many fruit farmers comes primarily from mango production. During 2006 and 2007, a stem-end rot disease was observed 1 week after harvest on 28 to 36% of stored mangoes picked from six orchards in the Pingtung, Tainan, and Kaoshiung regions. Two popular mango cultivars, Keitt and Irwin, showed greater susceptibility to this disease, while ‘Haden’ was found to be moderately susceptible. In storage, symptoms initially appeared as light-to-dark brown lesions surrounding peduncles. Rot symptoms advanced slowly but eventually penetrated the mesocarp, which consequently reduced the commercial value of fruits. The fungus formed abundant pycnidia (0.1 to 0.6 mm in diameter) on infected fruits in advanced stages of symptom development. Pieces of symptomatic fruits plated on acidified potato dextrose agar (PDA) and incubated at 25 ± 1°C consistently yielded the same fungus. A single conidial isolate was cultured. Pycnidia developed on PDA after continuous exposure to light for 9 to 14 days. On the basis of morphological characteristics, the fungus was identified as Phomopsis mangiferae L. (2,3). Pycnidia released two types of conidia: α-conidia (5 to 10 × 2.3 to 4.0 μm) were hyaline and oval to fusoid; and β-conidia (15.0 to 37.5 × 1.3 to 2.5 μm) were hyaline and filiform with characteristic curves. Conidiophores were hyaline, filiform, simple or branched, septate, and 15 to 75 μm long. Cultures incubated under continuous fluorescent light (185 ± 35 μE·m–2·s–1) at 25°C for 3 days were used as inoculum for pathogenicity tests. Five fruits from ‘Keitt’ were wounded with a sterilized scalpel and each wound (2 × 2 × 2 mm) was inoculated with either a 5-mm mycelium agar plug or a 0.5-ml spore suspension (105 conidia per ml) of the fungus. Five wounded fruits inoculated with 5-mm PDA plugs or sterile water alone served as controls. Inoculated areas were covered with moist, sterile cotton. Fruits were enclosed in plastic bags and incubated at 24°C for 3 days. The test was performed three times. The same symptoms were observed on all inoculated fruits, whereas no decay was observed on control fruits. Reisolations from the inoculated fruits consistently yielded P. mangiferae, thus fulfilling Koch's postulates. This disease has previously been reported in Australia, Brazil, China, Cuba, India, Malaysia, and the United States (1). To our knowledge, this is the first report of P. mangiferae causing stem-end rot disease on mangoes in Taiwan. Our report necessitates taking preventive strategies in the field, prior to or after harvest, to contain postharvest losses in mangoes. References: (1) G. I. Johnson. Page 39 in: Compendium of Tropical Fruit Diseases. R. C. Ploetz et al., eds. The American Phytopathological Society. St. Paul, MN, 1994. (2) R. C. Ploetz, ed. Page 354 in: Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, UK, 2003. (3) E. Punithalingam. No. 1168 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1993.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 146-146 ◽  
Author(s):  
W. M. Sun ◽  
L. N. Feng ◽  
W. Guo ◽  
D. Q. Liu ◽  
Z. H. Yang ◽  
...  

In 2008, an outbreak of pod rot of peanut (Arachis hypogaea L.) occurred on most of the peanut cultivars in the Old Yellow River drainage area, the largest peanut-growing region in China. Disease incidence reached as high as 90% in some fields, causing severe yield losses. The black rot of pods and blackened, nonrotting taproots is similar to symptoms of peanut black rot caused by Cylindrocladium parasiticum, but the reddish orange perithecia of C. parasiticum were not found on the taproots close to the surface of the soil. The foliage of affected plants was generally asymptomatic, but some plants turned greener. This pod rot disease was further investigated in 2008 and 2010. Twenty-three Fusarium-like isolates were obtained from symptomatic, surface-disinfested pods with a frequency of 82%. These isolates were fast growing, with flat, thin, and grayish white colonies when cultured on potato dextrose agar (PDA) at 28°C for 3 to 4 days. The hyaline, elongated to cylindrical conidia, aggregated in slimy heads on conidiogenous cells developed from undifferentiated hyphae when observed with the light microscope. The size of conidia (single celled or one septum) varied from 3 to 9 μm long and 1.5 to 3.5 μm wide on the basis of the measurement of 50 spores. Some conidia appeared slightly curved. Ascomata formed within 10 to 14 days, with a punctate appearance on the colony. The cerebriform ascomata were dark brown, pyriform, ostiolate, glabrous, 120 to 170 × 90 to 130 μm, and with necks 30 to 50 μm long. Asci measured 60 to 90 × 6 to 10 μm, were cylindrical to cylindric-clavate, thin walled, and had an apical ring. Ascospore arrangement was obliquely uniseriate or partially biseriate, very pale yellow to hyaline, ellipsoidal, and measured 8 to 12 × 4.5 to 6 μm. Some spores had a median transverse straight or curved septum and were slightly constricted at the septum, with 6 to 10 thin, transverse, hyaline flanges. Morphological characteristics of the isolates with ascomata dark brown and ascospores with 6 to 10 transverse hyaline flanges matched the description for Neocosmospora striata (1). The internal transcribed spacer (ITS) region of rDNA was amplified from extracted template DNA with primer pairs ITS4/ITS5 and sequenced. A 591-bp amplicon (GenBank Accession No. HM461900) had 99% sequence identity with Fusarium solani (HQ607968 and HQ608009) and N. vasinfecta (GU213063), which indicated that these fungi belong to the genus Neocosmospora or Fusarium, although there is no direct sequence evidence that they are N. striata. N. striata has only been previously reported in Japan (2). This species is unique because of the dark brown ascomata and there is no comparable species (1). Koch's postulates were completed by surface-disinfesting 80 peanut pods of cv. Jihua 9813 and soaking them in conidial suspensions (105 conidia/ml) for 2 min. Another 80 other pods soaked in sterile water served as controls. All peanuts were incubated in moist petri dishes under darkness at 28°C. Symptoms similar to those originally observed in the field formed within 10 days on all inoculated peanut pods and not the controls. N. striata was reisolated from all affected peanut pods. To our knowledge, this is first report of N. striata causing peanut pod rot in China and the first description of the anamorph of the fungus. References: (1) P. F. Cannon et al. Trans. Br. Mycol. Soc. 82:673, 1984. (2) S. Udagawa et al. Trans. Mycol. Soc. Jpn. 16:340, 1975.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 420-420
Author(s):  
J. R. Saucedo Carabez ◽  
S. Ochoa Ascencio ◽  
J. M. Tovar Pedraza

In April 2009 and 2010, severe symptoms of stalk rot of sugarcane (Saccharum officinarum L.) plants cvs. MEX-79-431, MEX-69-749, and RB-73-9735 were observed in commercials fields located in southeast Michoacan state, Mexico. The diseased plants exhibited complete discoloration of foliage, ascendant necrosis and rot in the internal stalk tissue, and disintegration of vascular tissue. Symptoms were most evident in the nodes with intense purple coloration. Dead plants were observed. Two diseased plants of each cultivar were collected. Pieces of symptomatic stem tissue were surface sterilized with 2% sodium hypochlorite solution for 1 min, washed with sterile distilled water, dried on sterilized paper, and plated onto potato dextrose agar (PDA). Petri dishes were incubated at 22°C under continuous white light for 72 h. A fungus was consistently isolated. On PDA, colonies had sparse aerial mycelium in the center and dense in the margins with black masses of conidia. The fungus isolated was grown on dishes containing 2% water agar (WA) overlaid with pine needles and incubated at 22°C under continuous white light for 2 weeks to induce the formation of fruiting bodies. Pycnidia produced in WA were black, up to 500 μm in diameter, usually globose, blister shaped without peaks, scattered, and multilocular. Conidiophores were cylindrical, hyaline, 5 to 20 × 1.5 to 2 μm, and formed in the pycnidial cavity. Conidia were ellipsoidal to oblong, unicellular, pale brown to dark brown, 8.5 to 12.5 × 3 to 4.5 μm, biguttulate, and non-septate. Paraphyses were hyaline, aseptate, occasionally branched, and flexuous. On the basis of cultural and morphological characteristics, the fungus was identified as Phaeocytostroma sp. DNA from an isolate was extracted and the internal transcribed spacer region (ITS1-5.8S-ITS2) of rDNA was amplified using primers ITS1 and ITS4 (2). PCR products were purified and sequenced. The resulting sequence of 536 bp was deposited in GenBank (Accession No. KC893550). BLAST analysis showed a 99% similarity with the sequence of Phaeocytostroma sacchari (FR748047). Pathogenicity tests of an isolate of P. sacchari were performed on 6-month-old sugarcane plants (cvs. MEX-79-431, MEX-69-749, and RB-73-9735). A 1-cm-deep wound near the base of the stem was created with a sterilized needle. Mycelial plugs (9 mm diameter) of 6-day-old PDA cultures were deposited on wounds and wrapped with Parafilm. Four plants of each cultivar were inoculated and 12 control plants were treated similarly with PDA plugs instead of fungal inoculum. Plants were placed at 28°C and 95% relative humidity for 72 h. All the inoculated plants exhibited typical wilt symptoms 4 weeks after inoculation, whereas control plants remained healthy. P. sacchari was consistently re-isolated from artificially inoculated plants. To our knowledge, this is the first report of P. sacchari on sugarcane in Mexico. The occurrence of stalk rot disease of sugarcane caused by P. sacchari has been described causing severe losses in sugarcane-producing countries such as South Africa and India (1). References: (1) R. Viswanathan et al. Sugar Tech. 5: 61, 2003. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Danilo Neves ◽  
Bill Bruening ◽  
Carrie A Knott ◽  
Chad Lee ◽  
Carl Bradley

The Kentucky distilling industry ranks as one of the state’s largest industries and continues to expand. In 2017, the Kentucky distilling industry was responsible for approximately $235 million in state and local tax revenues (Coomes and Kornstein, 2019). Rye (Secale cereale L.) grains are a vital component for production of some distilled spirits. Although winter rye is produced on relatively few hectares in Kentucky currently, a recent initiative has supported expanding production to help meet the growing demand of local distilleries. University of Kentucky winter rye research field trials were visited in Caldwell and Logan Counties, KY in May 2018, and in Fayette County, KY in May 2019. Leaves were collected that had dark brown, oval to irregular-shaped lesions with definite margins and yellow halos. Symptoms were present on approximately 50% to 80% of the flag leaves, with severity ranging from 5% to 30% of the flag leaf area affected. Leaves were surface-disinfested by soaking in a 2% NaOCl solution for 1 min and rinsed twice in sterilized water and then placed in a humidity chamber (plastic bag with moist paper towels) at room temperature (approximately 24°C) to induce fungal sporulation. Seventeen single-spore isolates were obtained and stored at -80°C in 15% glycerol solution. Isolates were grown on potato dextrose agar under 12 h cycles of white light/darkness for 5 days. Colonies were gray to black. Conidia that formed were mostly straight or slightly curved, dark olivaceous brown, 3-7 septate, and 41.0-90.4 × 15.2-29.3 µm. Based on the symptoms observed on the collected leaves and these morphological characteristics similar to those described by Chang and Hwang (2000) and Manamgoda et al. (2014), the fungus was tentatively identified as Bipolaris sorokiniana (Sorokin) Shoemaker. The sequence of internal transcribed spacer regions (ITS) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were used to identify three isolates (18Bs004, 18Bs111 and 19Bs064) using primer ITS1/ITS4 (White et al. 1990) and GPD1/GPD2 (Berbee et al. 1999), respectively. The sequences were deposited in GenBank with accession numbers MT457817, MT457818 and MZ066635 for ITS sequences and MZ073644 to MZ073646 for GAPDH sequences. BLAST searches with ITS and GAPDH sequences matched 100% identity (344/344 bp and 515/515 bp for ITS and GAPDH sequences, respectively) to B. sorokiniana (GenBank accession No. MT254731 and MH844813, respectively). To prove pathogenicity, a conidial suspension (1 × 105 conidia/ml) was used to inoculate 15-day-old cultivar ‘Serafino’ winter rye plants in the greenhouse. Leaves of 8 plants were inoculated with 50 ml of the conidial suspension using a spray bottle. Plants were covered with a transparent plastic bag for 48 h, and symptoms were observed 10 days after inoculation. Leaf lesions, similar to those described above, were present on all inoculated plants, but no symptoms were observed on non-inoculated control plants. Bipolaris sorokiniana was reisolated from symptomatic leaves and the identity of the pathogen was confirmed based on the morphology previously described. To our knowledge, this is the first report of spot blotch caused by B. sorokiniana on winter rye in Kentucky, but B. sorokiniana has been reported on rye in the neighboring state of Virginia (Roane 2009). Kentucky produces approximately 150,000 and 4,000 ha of winter wheat (Triticum aestivum) and winter barley (Hordeum vulgare) annually, respectively, which are both known hosts of B. sorokiniana (Kumar et al. 2002). An isolate of B. sorokiniana from rye was reported by Ghazvini and Tekauz (2007) to be less virulent on barley differential lines. Further research is needed to better understand spot blotch distribution, susceptibility in winter rye cultivars, and potential yield and quality loss implications in winter rye production and end use. It is unknown how susceptible various winter rye cultivars grown in Kentucky are to spot blotch.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhou Zhang ◽  
Zheng Bing Zhang ◽  
Yuan Tai Huang ◽  
FeiXiang Wang ◽  
Wei Hua Hu ◽  
...  

Peach [Prunus persica (L.) Batsch] is an important deciduous fruit tree in the family Rosaceae and is a widely grown fruit in China (Verde et al., 2013). In July and August 2018, a fruit rot disease was observed in a few peach orchards in Zhuzhou city, the Hunan Province of China. Approximately 30% of the fruit in more than 400 trees was affected. Symptoms displayed were brown necrotic spots that expanded, coalesced, and lead to fruit being rotten. Symptomatic tissues excised from the margins of lesions were surface sterilized in 70% ethanol for 10 s, 0.1% HgCl2 for 2 min, rinsed with sterile distilled water three times, and incubated on potato dextrose agar (PDA) at 26°C in the dark. Fungal colonies with similar morphology developed, and eight fungal colonies were isolated for further identification. Colonies grown on PDA were grayish-white with white aerial mycelium. After an incubation period of approximately 3 weeks, pycnidia developed and produced α-conidia and β-conidia. The α-conidia were one-celled, hyaline, fusiform, and ranged in size from 6.0 to 8.4 × 2.1 to 3.1 μm, whereas the β-conidia were filiform, hamate, and 15.0 to 27.0 × 0.8 to 1.6 μm. For molecular identification, total genomic DNA was extracted from the mycelium of a representative isolate HT-1 and the internal transcribed spacer region (ITS), β-tubulin gene (TUB), translation elongation factor 1-α gene (TEF1), calmodulin (CAL), and histone H3 gene (HIS) were amplified and sequenced (Meng et al. 2018). The ITS, TUB, TEF1, CAL and HIS sequences (GenBank accession nos. MT740484, MT749776, MT749778, MT749777, and MT749779, respectively) were obtained and in analysis by BLAST against sequences in NCBI GenBank, showed 99.37 to 100% identity with D. hongkongensis or D. lithocarpus (the synonym of D. hongkongensis) (Gao et al., 2016) (GenBank accession nos. MG832540.1 for ITS, LT601561.1 for TUB, KJ490551.1 for HIS, KY433566.1 for TEF1, and MK442962.1 for CAL). Pathogenicity tests were performed on peach fruits by inoculation of mycelial plugs and conidial suspensions. In one set, 0.5 mm diameter mycelial discs, which were obtained from an actively growing representative isolate of the fungus on PDA, were placed individually on the surface of each fruit. Sterile agar plugs were used as controls. In another set, each of the fruits was inoculated by application of 1 ml conidial suspension (105 conidia/ml) by a spray bottle. Control assays were carried out with sterile distilled water. All treatments were maintained in humid chambers at 26°C with a 12-h photoperiod. The inoculation tests were conducted twice, with each one having three fruits as replications. Six days post-inoculation, symptoms of fruit rot were observed on inoculated fruits, whereas no symptoms developed on fruits treated with agar plugs and sterile water. The fungus was re-isolated and identified to be D. hongkongensis by morphological and molecular methods, thus fulfilling Koch’s Postulates. This fungus has been reported to cause fruit rot on kiwifruit (Li et al. 2016) and is also known to cause peach tree dieback in China (Dissanayake et al. 2017). However, to our knowledge, this is the first report of D. hongkongensis causing peach fruit rot disease in China. The identification of the pathogen will provide important information for growers to manage this disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jun Guo ◽  
Jin Chen ◽  
Zhao Hu ◽  
Jie Zhong ◽  
Jun Zi Zhu

Cardamine hupingshanensis is a selenium (Se) and cadmium (Cd) hyperaccumulator plant distributed in wetlands along the Wuling Mountains of China (Zhou et al. 2018). In March of 2020, a disease with symptoms similar to gray mold was observed on leaves of C. hupingshanensis in a nursery located in Changsha, Hunan Province, China. Almost 40% of the C. hupingshanensis (200 plants) were infected. Initially, small spots were scattered across the leaf surface or margin. As disease progressed, small spots enlarged to dark brown lesions, with green-gray, conidia containing mold layer under humid conditions. Small leaf pieces were cut from the lesion margins and were sterilized with 70% ethanol for 10 s, 2% NaOCl for 2 min, rinsed with sterilized distilled water for three times, and then placed on potato dextrose agar (PDA) medium at 22°C in the dark. Seven similar colonies were consistently isolated from seven samples and further purified by single-spore isolation. Strains cultured on PDA were initially white, forming gray-white aerial mycelia, then turned gray and produced sclerotia after incubation for 2 weeks, which were brown to blackish, irregular, 0.8 to 3.0 × 1.2 to 3.5 mm (n=50). Conidia were unicellular, globose or oval, colourless, 7.5 to 12.0 × 5.5 to 8.3 μm (n=50). Conidiophores arose singly or in group, straight or flexuous, septate, brownish to light brown, with enlarged basal cells, 12.5 to 22.1 × 120.7 to 310.3 μm. Based on their morphological characteristics in culture, the isolates were putatively identified as Botrytis cinerea (Ellis 1971). Genomic DNA of four representative isolates, HNSMJ-1 to HNSMJ-4, were extracted by CTAB method. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH), heat-shock protein 60 gene (HSP60), ATP-dependent RNA helicaseDBP7 gene (MS547) and DNA-dependent RNA polymerase subunit II gene (RPB2) were amplified and sequenced using the primers described previously (Aktaruzzaman et al. 2018) (MW820311, MW831620, MW831628, MW831623 and MW831629 for HNSMJ-1; MW314722, MW316616, MW316617, MW316618 and MW316619 for HNSMJ-2; MW820519, MW831621, MW831627, MW831624 and MW831631 for HNSMJ-3; MW820601, MW831622, MW831626, MW831625 and MW831630 for HNSMJ-4). BLAST searches showed 99.43 to 99.90% identity to the corresponding sequences of B. cinerea strains, such as HJ-5 (MF426032.1, MN448500.1, MK791187.1, MH727700.1 and KX867998.1). A combined phylogenetic tree using the ITS, G3PDH, HSP60 and RPB2 sequences was constructed by neighbor-joining method in MEGA 6. It revealed that HNSMJ-1 to HNSMJ-4 clustered in the B. cinerea clade. Pathogenicity tests were performed on healthy pot-grown C. hupingshanensis plants. Leaves were surface-sterilized and sprayed with conidial suspension (106 conidia/ mL), with sterile water served as controls. All plants were kept in growth chamber with 85% humidity at 25℃ following a 16 h day-8 h night cycle. The experiment was repeated twice, with each three replications. After 4 to 7 days, symptoms similar to those observed in the field developed on the inoculated leaves, whereas controls remained healthy. The pathogen was reisolated from symptomatic tissues and identified using molecular methods, confirming Koch’s postulates. B. cinerea has already been reported from China on C. lyrate (Zhang 2006), a different species of C. hupingshanensis. To the best of our knowledge, this is the first report of B. cinerea causing gray mold on C. hupingshanensis in China and worldwide. Based on the widespread damage in the nursery, appropriate control strategies should be adopted. This study provides a basis for studying the epidemic and management of the disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lina Yang ◽  
Lingyun Wang ◽  
Jun Cao ◽  
Yuxin Zhu ◽  
Liang Zhang ◽  
...  

Peach shoot blight (PSB), which kills shoots, newly sprouted leaf buds and peach fruits, has gradually increased over the last ten years and has resulted in 30-50% of the total production loss of the peach industry in China. Phomopsis amygdali has been identified as the common causal agent of this disease. In this study, two new species, Phomopsis liquidambaris (strain JW18-2) and Diaporthe eres (strain JH18-2), were also pathogens causing PSB, as determined through molecular phylogenetic analysis based on the sequences of the internal transcribed spacer region (ITS), translation elongation factor 1-α (EF1-α) and beta-tubulin (TUB), and colony and conidial morphological characteristics. Biological phenotypic analysis showed that the colony growth rate of strain JW18-2 was faster than that of strains JH18-2 and ZN32 (one of the P. amygdali strains that we previously found and identified). All three strains produced α-conidia; however, JW18-2 could not produce β-conidia on alfalfa decoction and Czapek media, and the β-conidia produced by strain JH18-2 were shorter in length and thicker in width than those produced by strain ZN32. Pathogenicity tests showed that JW18-2 presented the strongest pathogenicity for peach fruits and twigs and was followed by strains JH18-2 and ZN32. The results shed light on the etiology of PSB and provide a warning that P. liquidambaris or D. eres might develop into dominant species after a few years, while also potentially benefitting the development of effective disease control management strategies.


Sign in / Sign up

Export Citation Format

Share Document