Resistance to Aspergillus flavus and A. parasiticus in almond advanced selections and cultivars and its interaction with the aflatoxins biocontrol strategy

Plant Disease ◽  
2021 ◽  
Author(s):  
Juan Moral Moral ◽  
MARÍA TERESA GARCÍA LOPEZ ◽  
Ana Gordon ◽  
Alejandro Ortega-Beltran ◽  
Ryan D Puckett ◽  
...  

Aflatoxin contamination of almond kernels, caused by Aspergillus flavus and A. parasiticus, is a severe concern for growers due to its high toxicity. In California, the global leader of almond production, aflatoxin can be managed by applying the biological control strain AF36 of A. flavus and selecting resistant cultivars. Here, we classified the almond genotypes by K-Means cluster analysis into three groups [Susceptible (S), Moderately Susceptible (MS), or Resistant (R)] based on aflatoxin content of inoculated kernels. The protective effects of the shell and seedcoat in preventing aflatoxin contamination were also examined. The presence of intact shells reduced aflatoxin contamination over 100-fold. The seedcoat provided a layer of protection, but not complete. In kernel inoculation assays, none of the studied almond genotypes showed a total resistance to the pathogen. However, nine traditional cultivars and four advanced selections were classified as R. Because these advanced selections contained germplasm derived from peach, we compared the kernel resistance of three peach cultivars to that shown by kernels of a R (‘Sonora’) and a S (‘Carmel’) almond cultivar and five pistachio cultivars. Overall, peach kernels were significantly more resistant to the pathogen than almond kernels, which were more resistant than pistachio kernels. Finally, we studied the combined effect of the cultivar resistance and the biocontrol strain AF36 in limiting aflatoxin contamination. For this, we co-inoculated almond kernels of R ‘Sonora’ and S ‘Carmel’ with AF36 72 h before or 48 h after inoculating with an aflatoxin-producing strain of A. flavus. The percentage of aflatoxin reduction by AF36 strain was greater in kernels of ‘Carmel’ kernels (98%) than in those of ‘Sonora’ (83%). Cultivar resistance also affected the kernel colonization by the biological control strain. AF36 strain limited aflatoxin contamination in almond kernels even when applied 48 h after the aflatoxin-producing strain. Our results show that biocontrol combined with the use of cultivars with resistance to aflatoxin contamination can result in a more robust protection strategy than the use of either practices in isolation.

2008 ◽  
Vol 1 (3) ◽  
pp. 333-340 ◽  
Author(s):  
H. Abbas ◽  
R. Zablotowicz ◽  
H. Bruns

To successfully exploit biological control it is desirable to understand how the introduced agent colonises the host and interferes with establishment of the pest. This study assessed field colonisation of maize by Aspergillus flavus strains as biological control agents to reduce aflatoxin contamination. Maize (corn, Zea mays L.) ears were inoculated with A. flavus using a pin-bar technique in 2004 and 2005. Non-aflatoxigenic strains K49 (NRRL 30797) & CT3 (NRRL 30798) and toxigenic F3W4 (NRRL 30798) were compared against a carrier control (0.2% aqueous Tween 20). Ten ears were sampled over 12 to 20 days, visually assessed, and curves fit to a three compartment Gompertz equation or other best appropriate regressions. Aflatoxin was determined by HPLC and cyclopiazonic acid (CPA) by LC/MS. The Gompertz model describes growth parameters, e.g. growth constant, lag phase and maximum colonisation characterised patterns of maize colonisation for most inoculated treatments. Aflatoxin accumulation in maize inoculated with F3W4 was about 35,000 ng/g in 2004 and 2005, with kinetics of aflatoxin accumulation in 2005 well described by the Gompertz equation. Less than 200 ng/g was observed in maize inoculated with strains CT3 & K49 and accumulation was described by a linear or logistic model. Maize inoculated with strains CT3 and F3W4 accumulated a maximum of 220 and 169 µg/kg CPA, respectively, compared to 22 and 0.2 µg/kg in the control and K49 inoculated, respectively. This technique can be used to elucidate colonisation potential of non-toxigenic A. flavus in maize in relation to biological control of aflatoxin. The greatest reduction of aflatoxin and CPA in maize inoculated with strain K49 and Gompertz parameters on colonisation indicates its superiority to CT3 as a biological control agent. The dynamics of maize colonisation by A. flavus strains and subsequent mycotoxin accumulation generated by using the pin-bar technique has implications for characterising the competence of biocontrol strains for reducing aflatoxin contamination.


2013 ◽  
Vol 76 (6) ◽  
pp. 1051-1055 ◽  
Author(s):  
L. J. ROSADA ◽  
J. R. SANT'ANNA ◽  
C. C. S. FRANCO ◽  
G. N. M. ESQUISSATO ◽  
P. A. S. R. SANTOS ◽  
...  

Aspergillus flavus, a haploid organism found worldwide in a variety of crops, including maize, cottonseed, almond, pistachio, and peanut, causes substantial and recurrent worldwide economic liabilities. This filamentous fungus produces aflatoxins (AFLs) B1 and B2, which are among the most carcinogenic compounds from nature, acutely hepatotoxic and immunosuppressive. Recent efforts to reduce AFL contamination in crops have focused on the use of nonaflatoxigenic A. flavus strains as biological control agents. Such agents are applied to soil to competitively exclude native AFL strains from crops and thereby reduce AFL contamination. Because the possibility of genetic recombination in A. flavus could influence the stability of biocontrol strains with the production of novel AFL phenotypes, this article assesses the diversity of vegetative compatibility reactions in isolates of A. flavus to identify heterokaryon self-incompatible (HSI) strains among nonaflatoxigenic isolates, which would be used as biological controls of AFL contamination in crops. Nitrate nonutilizing (nit) mutants were recovered from 25 A. flavus isolates, and based on vegetative complementation between nit mutants and on the microscopic examination of the number of hyphal fusions, five nonaflatoxigenic (6, 7, 9 to 11) and two nontoxigenic (8 and 12) isolates of A. flavus were phenotypically characterized as HSI. Because the number of hyphal fusions is reduced in HSI strains, impairing both heterokaryon formation and the genetic exchanges with aflatoxigenic strains, the HSI isolates characterized here, especially isolates 8 and 12, are potential agents for reducing AFL contamination in crops.


Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 34 ◽  
Author(s):  
Ethel Monda ◽  
Joel Masanga ◽  
Amos Alakonya

Aflatoxins are carcinogenic chemical metabolites produced by Aspergillus spp. of the section Flavi. In Kenya, Aspergillus flavus is the most prevalent and has been associated with several acute and chronic aflatoxin outbreaks in the past. In this study, we evaluated the occurrence of A. flavus in soils from two agro-ecological regions with contrasting climatic conditions, aflatoxin contamination histories and cropping systems. Aspergillus spp. were first isolated from soils before the identification and determination of their aflatoxigenicity. Further, we determined the occurrence of Pseudomonas and Bacillus spp. in soils from the two regions. These bacterial species have long been associated with biological control of several plant pathogens including Aspergillus spp. Our results show that A. flavus occurred widely and produced comparatively higher total aflatoxin levels in all (100%) study sites from the eastern to the western regions of Kenya. For the western region, A. flavus was detected in 4 locations (66.7%) that were previously under maize cultivation with the isolates showing low aflatoxigenicity. A. flavus was not isolated from soils under sugarcane cultivation. Distribution of the two bacterial species varied across the regions but we detected a weak relationship between occurrence of bacterial species and A. flavus. We discuss these findings in the context of the influence of climate, microbial profiles, cropping systems and applicability in the deployment of biological control remedies against aflatoxin contamination.


2015 ◽  
Vol 8 (2) ◽  
pp. 235-244 ◽  
Author(s):  
K.E. Damann Jr.

The term ‘competitive exclusion’ involving physical blockage of growth or access of the toxigenic strain to the seed target has been used to describe the mechanism of biological control of aflatoxin contamination. However, recent evidence suggests that a form of intraspecific aflatoxin inhibition requiring growth of the competing strains together during the infection process in such a way that hyphae physically interact or touch is the trigger for preventing induction of aflatoxin synthesis. This direct touch-based inhibition of aflatoxin synthesis is posited to be the mechanistic basis of biological control in this system. Evidence for this idea comes from the published observations that co-culture of toxigenic and atoxigenic strains in a suspended disc system, in which the hyphae physically interact, prevents aflatoxin production. However, growth of the same strains in the same medium in the two compartments of a filter insert plate well system, separating the atoxigenic and toxigenic strains with a 0.4 μm or 3.0 μm filter, allows aflatoxin production approaching that of the toxigenic strain alone. When the strains are mixed and placed in both the insert and the well compartments, the intraspecific aflatoxin inhibition occurs as it did in the suspended disc culture system. This further suggests that neither nutrient competition nor soluble signal molecules, which should pass through the filter, are involved in intraspecific aflatoxin inhibition. When the two strains are separated by a 12 μm filter that would allow some passage of conidia or hyphae between the compartments the aflatoxin synthesis is approximately half that of the toxigenic strain alone. This phenomenon could be termed ‘competitive inclusion’ or ‘competitive phenotype conversion’. Work of others that relates to understanding the phenomenon is discussed, as well as an Aspergillus flavus population biology study from the Louisiana maize agro-ecosystem which has biological control implications.


Plant Disease ◽  
2020 ◽  
Author(s):  
MARÍA TERESA GARCÍA LOPEZ ◽  
Yong Luo ◽  
Alejandro Ortega-Beltran ◽  
Ramon Jaime ◽  
Juan Moral Moral ◽  
...  

The species Aspergillus flavus and A. parasiticus are commonly found in the soils of nut-growing areas in California. Several isolates can produce aflatoxins that occasionally contaminate nut kernels conditioning their sale. The strain AF36 of A. flavus, which does not produce aflatoxins, is registered as a biocontrol agent for use in almond, pistachio, and fig crops in California. After application in the orchards, AF36 displaces aflatoxin-producing Aspergillus spp. and thus reduces aflatoxin contamination. Vegetative compatibility assays (VCA) have traditionally been used to track AF36 in soils and crops where it has been applied. However, VCA is labor-intensive and time-consuming. Here, we developed a quantitative real-time PCR (qPCR) protocol to quantify proportions of AF36 accurately and efficiently in different substrates. Specific primers to target AF36 and toxigenic strains of A. flavus and A. parasiticus were designed based on sequence of aflC, a gene essential for aflatoxin biosynthesis. Standard curves were generated to calculate proportions of AF36 based on threshold values (Cq). Verification assays using pure DNA and conidial suspension mixtures demonstrated a significant relationship by regression analysis between known and qPCR-measured AF36 proportions in DNA (R2 = 0.974; P < 0.001) and conidia mixtures (R2 = 0.950; P < 0.001). The tests conducted by qPCR in pistachio leaves, nuts, and soil samples demonstrated the usefulness of the qPCR method to precisely quantify proportions of AF36 in diverse substrates, ensuring important time and cost savings. The outputs of the current study will serve to design better aflatoxin management strategies for pistachio and other crops.


1999 ◽  
Vol 62 (6) ◽  
pp. 650-656 ◽  
Author(s):  
JOE W. DORNER ◽  
RICHARD J. COLE ◽  
DONALD T. WICKLOW

Soil in corn plots was inoculated with nonaflatoxigenic strains of Aspergillus flavus and A. parasiticus during crop years 1994 to 1997 to determine the effect of application of the nontoxigenic strains on preharvest aflatoxin contamination of corn. Corn plots in a separate part of the field were not inoculated and served as controls. Inoculation resulted in significant increases in the total A. flavus/parasiticus soil population in treated plots, and that population was dominated by the applied strain of A. parasiticus (NRRL 21369). In the years when weather conditions favored aflatoxin contamination (1996 and 1997), corn was predominately colonized by A. flavus as opposed to A. parasiticus. In 1996, colonization by wild-type A. flavus was significantly reduced in treated plots compared with control plots, but total A. flavus/parasiticus colonization was not different between the two groups. A change to a more aggressive strain of A. flavus (NRRL 21882) as part of the biocontrol inoculum in 1997 resulted in a significantly (P &lt; 0.001) higher colonization of corn by the applied strain. Weather conditions did not favor aflatoxin contamination in 1994 and 1995. In 1996, the aflatoxin concentration in corn from treated plots averaged 24.0 ppb, a reduction of 87% compared with the aflatoxin in control plots that averaged 188.4 ppb. In 1997, aflatoxin was reduced by 66% in treated corn (29.8 ppb) compared with control corn (87.5 ppb). Together, the data indicated that although the applied strain of A. parasiticus dominated in the soil, the nonaflatoxigenic strains of A. flavus were more responsible for the observed reductions in aflatoxin contamination. Inclusion of a nonaflatoxigenic strain of A. parasiticus in a biological control formulation for aflatoxin contamination may not be as important for airborne crops, such as corn, as for soilborne crops, such as peanuts.


1991 ◽  
Vol 54 (8) ◽  
pp. 623-626 ◽  
Author(s):  
ROBERT L. BROWN ◽  
PETER J. COTTY ◽  
THOMAS E. CLEVELAND

In field plot experiments, an atoxigenic strain of Aspergillus flavus interfered with preharvest aflatoxin contamination of corn when applied either simultaneously with or one day prior to a toxigenic strain. The atoxigenic strain reduced preharvest aflatoxin contamination 80 to 95%. The atoxigenic strain was also effective in reducing postharvest aflatoxin contamination caused by both an introduced toxigenic strain and by strains resident on the kernels. The results suggest that atoxigenic strains of A. flavus may have potential use as biological control agents directed at reducing both preharvest and postharvest aflatoxin contamination of corn.


2021 ◽  
Vol 25 (12) ◽  
pp. 32-43
Author(s):  
D. Syamala ◽  
S. Nabanita Kumar ◽  
P. Lalitha

Groundnuts are often prone to contamination by Microorganisms during pre-harvest or post-harvest storage. One such contaminant is Aspergillus flavus which is abundantly found in soil and air. Several strains of A. flavus are known to produce mycotoxins named as aflatoxins. These aflatoxins are potent carcinogenic agents whose destruction has become a challenging task in the present scenario. Various physical and chemical methods are available to eliminate the growth of Aspergillus flavus but these methods have several demerits. The present study is based on biological control of Aspergillus flavus using Trichoderma viride strain TV 10. Antagonistic studies of Tv 10 against A.flavus were carried out by performing dual culture technique.


Plant Disease ◽  
2011 ◽  
Vol 95 (2) ◽  
pp. 212-218 ◽  
Author(s):  
C. Probst ◽  
R. Bandyopadhyay ◽  
L. E. Price ◽  
P. J. Cotty

Aspergillus flavus has two morphotypes, the S strain and the L strain, that differ in aflatoxin-producing ability and other characteristics. Fungal communities on maize dominated by the S strain of A. flavus have repeatedly been associated with acute aflatoxin poisonings in Kenya, where management tools to reduce aflatoxin levels in maize are needed urgently. A. flavus isolates (n = 290) originating from maize produced in Kenya and belonging to the L strain morphotype were tested for aflatoxin-producing potential. A total of 96 atoxigenic isolates was identified from four provinces sampled. The 96 atoxigenic isolates were placed into 53 vegetative compatibility groups (VCGs) through complementation of nitrate non-utilizing mutants. Isolates from each of 11 VCGs were obtained from more than one maize sample, isolates from 10 of the VCGs were detected in multiple districts, and isolates of four VCGs were found in multiple provinces. Atoxigenic isolates were tested for potential to reduce aflatoxin concentrations in viable maize kernels that were co-inoculated with highly toxigenic S strain isolates. The 12 most effective isolates reduced aflatoxin levels by >80%. Reductions in aflatoxin levels caused by the most effective Kenyan isolates were comparable with those achieved with a United States isolate (NRRL-21882) used commercially for aflatoxin management. This study identified atoxigenic isolates of A. flavus with potential value for biological control within highly toxic Aspergillus communities associated with maize production in Kenya. These atoxigenic isolates have potential value in mitigating aflatoxin outbreaks in Kenya, and should be evaluated under field conditions.


Sign in / Sign up

Export Citation Format

Share Document