scholarly journals First Report of Colletotrichum lupini on Lupinus hartwegii and L. mutabilis

Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 161-161
Author(s):  
E. N. Rosskopf ◽  
J. Hong ◽  
N. Kokalis-Burelle

During the 2013 winter cut flower production season, a severe anthracnose epidemic was observed on Lupinus mutabilis (syn L. cruckshanksii) on a commercial flower farm in Martin County, FL. Approximately 50% of the crop was lost to the disease. Symptoms included dark brown, irregularly shaped leaf spots, but more typically, there was a single severe twist in the stem, forming a distinctive necrotic crook. Margins of necrotic lesions were excised and surface sterilized by immersion in 1% sodium hypochlorite for 90 s, rinsed in sterile deionized water, and plated onto potato dextrose agar (PDA). Plates were incubated at approximately 27°C with cycles of 12 h light/12 h darkness. Infected tissue consistently produced colonies that were typical of the genus Colletotrichum. Conidia were primarily oval, with one rounded end and one pointed end, and were highly variable in size, ranging from 10 to 15 μm in length and 3.5 to 5.5 μm in width. Cultures were gray with orange spots, and no setae were observed. These morphological characteristics are consistent with those of Colletotrichum lupini (2). Identification of this species was confirmed by performing a BLASTn search with ITS sequence data (primers ITS4 and ITS5), which shared 99% identity with GenBank submission AJ301968, C. lupini var. setosum strain BBA 71310, isolated from L. luteus in Poland. Inoculum was produced by flooding PDA cultures with sterile deionized water, scraping with a rubber policeman, and passing the suspension through four layers of sterile cheesecloth. This preparation was used to inoculate 10 L. mutabilis and 10 L. hartwegii plants by injecting 10 μl of a suspension of 105 conidia/ml into the stem using a hypodermic needle (1). Ten additional plants were injected with sterile deionized water and maintained with the inoculated plants in the greenhouse for 4 weeks. All of the inoculated plants developed the previously-observed necrotic crook in the stem, whereas control plants developed no symptoms. The same organism was isolated from all inoculated plants. The ITS region was again sequenced, and the Polish strain was the closest match. The Floridian isolate sequence was deposited in GenBank (KF207599). Epidemics of anthracnose on ornamental lupins are common in most areas in which they are grown. In 1939, research plots of L. angustifolius were found with symptoms of anthracnose caused by Glomerella cingulata (3). Although it is not possible to determine if this isolate would be redefined as C. lupini, it does not seem likely since pathogenicity was confirmed on L. angustifolius and L. albus, but it did not cause infection on L. luteus (3) as has been reported for C. lupini (2). The finding of a lupin anthracnose in southeastern Florida is important to both the cut flower producers as well as vegetable producers who might consider some species of Lupinus as potential green manure crops. To the best of our knowledge, this is the first report of C. lupini or any Colletotrichum species on L. hartwegii and L. mutabilis in Florida. References: (1) W. H. Elmer et al. Plant Dis 85:216, 2001. (2) H. I. Nirenger et al. Mycologia 94:307, 2002. (3) J. L. Weimer. Phytopathology 43:249, 1943.

Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1580-1580
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
J. Y. Kim ◽  
H. D. Shin

Sweet basil, Ocimum basilicum L., is a fragrant herb belonging to the family Lamiaceae. Originated in India 5,000 years ago, sweet basil plays a significant role in diverse cuisines across the world, especially in Asian and Italian cooking. In October 2008, hundreds of plants showing symptoms of leaf spot with nearly 100% incidence were found in polyethylene tunnels at an organic farm in Icheon, Korea. Leaf spots were circular to subcircular, water-soaked, dark brown with grayish center, and reached 10 mm or more in diameter. Diseased leaves defoliated prematurely. The damage purportedly due to this disease has reappeared every year with confirmation of the causal agent made again in 2011. A cercosporoid fungus was consistently associated with disease symptoms. Stromata were brown, consisting of brown cells, and 10 to 40 μm in width. Conidiophores were fasciculate (n = 2 to 10), olivaceous brown, paler upwards, straight to mildly curved, not geniculate in shorter ones or one to two times geniculate in longer ones, 40 to 200 μm long, occasionally reaching up to 350 μm long, 3.5 to 6 μm wide, and two- to six-septate. Conidia were hyaline, acicular to cylindric, straight in shorter ones, flexuous to curved in longer ones, truncate to obconically truncate at the base, three- to 16-septate, and 50 to 300 × 3.5 to 4.5 μm. Morphological characteristics of the fungus were consistent with the previous reports of Cercospora guatemalensis A.S. Mull. & Chupp (1,3). Voucher specimens were housed at Korea University herbarium (KUS). An isolate from KUS-F23757 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC43980). Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 548 bp was deposited in GenBank (Accession No. JQ995781). This showed >99% similarity with sequences of many Cercospora species, indicating their close phylogenetic relationship. Isolate of KACC43980 was used in the pathogenicity tests. Hyphal suspensions were prepared by grinding 3-week-old colonies grown on PDA with distilled water using a mortar and pestle. Five plants were inoculated with hyphal suspensions and five plants were sprayed with sterile distilled water. The plants were covered with plastic bags to maintain a relative humidity of 100% for 24 h and then transferred to a 25 ± 2°C greenhouse with a 12-h photoperiod. Typical symptoms of necrotic spots appeared on the inoculated leaves 6 days after inoculation, and were identical to the ones observed in the field. C. guatemalensis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Malawi, India, China, and Japan (2,3), but not in Korea. To our knowledge, this is the first report of C. guatemalensis on sweet basil in Korea. Since farming of sweet basil has recently started on a commercial scale in Korea, the disease poses a serious threat to safe production of this herb, especially in organic farming. References: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Ithaca, NY, 1953. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology & Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , May 5, 2012. (3) J. Nishikawa et al. J. Gen. Plant Pathol. 68:46, 2002.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1011-1011 ◽  
Author(s):  
Z. Y. Cai ◽  
Y. X. Liu ◽  
G. X. Huang ◽  
M. Zhou ◽  
G. Z. Jiang ◽  
...  

Rubber tree (Hevea brasiliensis Muell. Arg.) is an important industrial crop of tropical areas for natural rubber production. In October 2013, foliar spots (0.1 to 0.4 mm in diameter), black surrounded by a yellow halo, and with lesions slightly sunken were observed on the rubber tree leaf in a growing area in Heikou County of Yunnan Province. Lesion tissues removed from the border between symptomatic and healthy tissue were surface sterilized in 75% ethanol and air-dried, plated on PDA plates, and incubated at 28°C with alternating day/night cycles of light. The pathogen was observed growing out of many of the leaf pieces, and produced abundant conidia. Colonies 6.1 cm in diameter developed on potato carrot agar (PCA) after 7 days, with well-defined concentric rings of growth. Colonies on PCA were composed of fine, dark, radiating, surface and subsurface hyphae. Conidia produced in PCA culture were mostly solitary or in short chains of 2 to 5 spores, long ovoid to clavate, and light brown, 40 to 81.25 × 8 to 20 μm (200 colonies were measured), with 3 to 6 transverse septa and 0 to 2 longitudinal or oblique septa. Morphological characteristics were similar to those described for Alternaria heveae (3,4). A disease of rubber tree caused by Alternaria sp. had been reported in Mexico in 1947 (2). DNA of Ah01HK13 isolate was extracted for PCR and sequencing of the ITS region with ITS1 and ITS4 primers was completed. From the BLAST analysis, the sequence of Ah01HK13 (GenBank Accession No. KF953884), had 97% similarity to A. dauci, 96% identical to A. macrospora (AY154701.1 and DQ156342.1, respectively), indicating the pathogen belonged to Alternaria genus. According to morphological characteristics, this pathogen was identified as A. heveae. Pathogenicity of representative isolate, Ah01HK13 was confirmed using a field rubber tree inoculation method. Three rubber plants (the clone of rubber tree Yunyan77-4) were grown to the copper-colored leaf stage and inoculated by spraying spore suspension (concentration = 104 conidia/ml) to the copper-colored leaves until drops were equally distributed on it using manual pressure sprayer. Three rubber plants sprayed with sterile distilled water were used as controls. After inoculation, the plants were covered with plastic bags. The plastic bags were removed after 2 days post-inoculation (dpi) and monitored daily for symptom development (1). The experiment was repeated three times. The typical 0.1 to 0.4 mm black leaf spots were observed 7 dpi. No symptoms were observed on control plants. A fungus with the same colony and conidial morphology as A. heveae were re-isolated from leaf lesions on inoculated rubber plants, but not from asymptomatic leaves of control plants, fulfilling Koch's postulates. Based on these results, the disease was identified as black spot of rubber tree caused by A. heveae. To our knowledge, this is the first report of A. heveae on rubber tree in China. References: (1) Z. Y. Cai et al. Microbiol Res. 168:340, 2013. (2) W. J. Martin. Plant Dis. Rep. 31:155, 1947. (3) E. G. Simmons. Mycotaxon 50:262, 1994. (4) T. Y. Zhang. Page 111 in: Flora Fungorum Sinicorum: Alternaria, Science Press, Beijing, 2003.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 991-991 ◽  
Author(s):  
W. J. Ma ◽  
X. Yang ◽  
X. R. Wang ◽  
Y. S. Zeng ◽  
M. D. Liao ◽  
...  

Hylocereus undatus widely grows in southern China. Some varieties are planted for their fruits, known as dragon fruits or Pitaya, while some varieties for their flowers known as Bawanghua. Fresh or dried flowers of Bawanghua are used as routine Chinese medicinal food. Since 2008, a serious anthracnose disease has led to great losses on Bawanghua flower production farms in the Baiyun district of Guangzhou city in China. Anthracnose symptoms on young stems of Bawanghua are reddish-brown, sunken lesions with pink masses of spores in the center. The lesions expand rapidly in the field or in storage, and may coalesce in the warm and wet environment in spring and summer in Guangzhou. Fewer flowers develop on infected stems than on healthy ones. The fungus overwinters in infected debris in the soil. The disease caused a loss of up to 50% on Bawanghua. Putative pathogenic fungi with whitish-orange colonies were isolated from a small piece of tissue (3 × 3 mm) cut from a lesion margin and cultured on potato dextrose agar in a growth chamber at 25°C, 80% RH. Dark colonies with acervuli bearing pinkish conidial masses formed 14 days later. Single celled conidia were 11 to 18 × 4 to 6 μm. Based on these morphological characteristics, the fungi were identified as Colletotrichum gloeosporioides (Penz.) Penz. & Sacc (2). To confirm this, DNA was extracted from isolate BWH1 and multilocus analyses were completed with DNA sequence data generated from partial ITS region of nrDNA, actin (ACT) and glutamine synthetase (GS) nucleotide sequences by PCR, with C. gloeosporioides specific primers as ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) / CgInt (5′-GGCCTCCCGCCTCCGGGCGG-3′), GS-F (5′-ATGGCCGAGTACATCTGG-3′) / GS-R (5′-GAACCGTCGAAGTTCCAC-3′) and actin-R (5′-ATGTGCAAGGCCGGTTTCGC-3′) / actin-F (5′-TACGAGTCCTTCTGGCCCAT-3′). The sequence alignment results indicated that the obtained partial ITS sequence of 468 bp (GenBank Accession No. KF051997), actin sequence of 282 bp (KF712382), and GS sequence of 1,021 bp (KF719176) are 99%, 96%, and 95% identical to JQ676185.1 for partial ITS, FJ907430 for ACT, and FJ972589 for GS of C. gloeosporioides previously deposited, respectively. For testing its pathogenicity, 20 μl of conidia suspension (1 × 106 conidia/ml) using sterile distilled water (SDW) was inoculated into artificial wounds on six healthy young stems of Bawanghua using sterile fine-syringe needle. Meanwhile, 20 μl of SDW was inoculated on six healthy stems as a control. The inoculated stems were kept at 25°C, about 90% relative humidity. Three independent experiments were carried out. Reddish-brown lesions formed after 10 days, on 100% stems (18 in total) inoculated by C. gloeosporioides, while no lesion formed on any control. The pathogen was successfully re-isolated from the inoculated stem lesions on Bawanghua. Thus, Koch's postulates were fulfilled. Colletotrichum anthracnose has been reported on Pitaya in Japan (3), Malaysia (1) and in Brazil (4). To our knowledge, this is the first report of anthracnose disease caused by C. gloeosporioides on young stems of Bawanghua (H. undatus) in China. References: (1) M. Masyahit et al. Am. J. Appl. Sci. 6:902, 2009. (2) B. C. Sutton. Page 402 in: Colletotrichum Biology, Pathology and Control. J. A. Bailey and M. J. Jeger, eds. CAB International, Wallingford, UK, 1992. (3) S. Taba et al. Jpn. J. Phytopathol. 72:25, 2006. (4) L. M. Takahashi et al. Australas. Plant Dis. Notes 3:96, 2008.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 845-845 ◽  
Author(s):  
C. N. Xu ◽  
Z. S. Zhou ◽  
Y. X. Wu ◽  
F. M. Chi ◽  
Z. R. Ji ◽  
...  

Blueberry (Vaccinium spp.) is becoming increasingly popular in China as a nutritional berry crop. With the expansion of blueberry production, many diseases have become widespread in different regions of China. In August of 2012, stem and leaf spots symptomatic of anthracnose were sporadically observed on highbush blueberries in a field located in Liaoning, China, where approximately 15% of plants were diseased. Symptoms first appeared as yellow to reddish, irregularly-shaped lesions on leaves and stems. The lesions then expanded, becoming dark brown in the center and surrounded by a reddish halo. Leaf and stem tissues (5 × 5 mm) were cut from the lesion margins and surface-disinfected in 70% ethanol for 30 s, followed by three rinses with sterile water before placing on potato dextrose agar (PDA). Plates were incubated at 28°C. Colonies were initially white, becoming grayish-white to gray with yellow spore masses. Conidia were one-celled, hyaline, and cylindrical with rounded ends, measuring 15.0 to 25.0 × 4.0 to 7.5 μm. No teleomorph was observed. The fungus was tentatively identified as Colletotrichum gloeosporioides (PenZ.) PenZ & Sacc. (teleomorph Glomerella cingulata (Stoneman) Spauld. & H. Schrenk) based on morphological characteristics of the colony and conidia (1). Genomic DNA was extracted from isolate XCG1 and the internal transcribed spacer (ITS) region of the ribosomal DNA (ITS1–5.8S-ITS2) was amplified with primer pairs ITS1 and ITS4. BLAST searches showed 99% identity with C. gloeosporioides isolates in GenBank (Accession No. AF272779). The sequence of isolate XCG1 (C. gloeosporioides) was deposited into GenBank (JX878503). Pathogenicity tests were conducted on 2-year-old potted blueberries, cv. Berkeley. Stems and leaves of 10 potted blueberry plants were wounded with a sterilized needle and sprayed with a suspension of 105 conidia per ml of sterilized water. Five healthy potted plants were inoculated with sterilized water as control. Dark brown lesions surrounded by reddish halos developed on all inoculated leaves and stems after 7 days, and the pathogen was reisolated from lesions of 50% of inoculated plants as described above. The colony and conidial morphology were identical to the original isolate XCG1. No symptoms developed on the control plants. The causal agent of anthracnose on blueberry was identified as C. gloeosporioides on the basis of morphological and molecular characteristics, and its pathogenicity was confirmed with Koch's postulates. Worldwide, it has been reported that blueberry anthracnose might be caused by C. acutatum and C. gloeosporioides (2). However, we did not isolate C. acutatum during this study. To our knowledge, this is the first report of stem and leaf anthracnose of blueberry caused by C. gloeosporioides in China. References: (1) J. M. E. Mourde. No 315. CMI Descriptions of Pathogenic Fungi and Bacteria. Kew, Surrey, UK, 1971. (2) N. Verma, et al. Plant Pathol. 55:442, 2006.


Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 916-916 ◽  
Author(s):  
X.-B. Liu ◽  
T. Shi ◽  
C.-P. Li ◽  
J.-M. Cai ◽  
G.-X. Huang

Cassava (Manihot esculenta) is an important economic crop in the tropical area of China. During a survey of diseases in July and September of 2009, leaf spots were observed on cassava plants at three separate plantations in Guangxi (Yunfu and Wuming) and Hainan (Baisha) provinces. Circular or irregular-shaped leaf spots were present on more than one-third of the plants. Spots were dark brown or had white papery centers delimited by dark brown rims and surrounded by a yellow halo. Usually, the main vein or small veinlets adjacent to the spots were dark. Some defoliation of plants was evident at the Wuming location. A fungus was isolated from symptomatic leaves from each of the three locations and designated CCCGX01, CCCGX02, and CCCHN01. Single-spore cultures of these isolates were incubated on potato dextrose agar (PDA) for 7 days with a 12-h light/dark cycle at a temperature of 28 ± 1°C. Conidiophores were straight to slightly curved, unbranched, and pale to light brown. Conidia were formed singly or in chains, obclavate to cylindrical, straight or curved, subhyaline-to-pale olivaceous brown, 19.6 to 150.3 μm long and 5.5 to 10.7 μm wide at the base, with 4 to 13 pseudosepta. Morphological characteristics of the specimen and their conidia were similar to the descriptions for Corynespora cassiicola (2). The isolate CCCGX01 was selected as a representative for molecular identification. Genomic DNA was extracted by the cetyltrimethylammoniumbromide protocol (3) from mycelia and used as a template for amplification of the internal transcribed spacer (ITS) region of rDNA with primer pair ITS1/ITS4. The sequence (GenBank Accession No. GU138988) exactly matched several sequences (e.g., GenBank Accession Nos. FJ852715, EF198117, and AY238606) of C. cassiicola (1). Young, healthy, and fully expanded green leaves of cassava cv. SC205 were surface sterilized. Ten leaves were inoculated with 10-μl drops of 104 ml suspension of conidia and five leaves were inoculated with the same volume of sterile water to serve as controls. After inoculation, leaves were placed in a dew and dark chamber for 36 h at 25°C and subsequently transferred to the light for 5 days. All inoculated leaves with isolates showed symptoms similar to those observed in natural conditions, whereas the controls remained symptom free. The morphological characteristics of reisolated conidia that formed on the diseased parts were identical with the nature isolates. To our knowledge, this is the first report of leaf spot caused by C. cassiicola on cassava in China. References: (1) L. J. Dixon et al. Phytopathology 99:1015, 2009. (2) M. B. Ellis et al. Corynespora cassiicola. No. 303 in: CMI Description of Pathogenic Fungi and Bacteria. Commonwealth Mycological Institute, Kew, UK 1971. (3) J. R. Xu et al. Genetics 143:175, 1996.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1269-1269 ◽  
Author(s):  
J. S. Patel ◽  
M. I. Costa de Novaes ◽  
S. Zhang

Arugula (Eruca sativa) is grown in Florida and is an important component in packaged salad products. During spring 2013, leaf lesions on arugula caused significant economic losses in Miami-Dade County, Florida. Symptoms initially appeared as small water-soaked lesions that later became circular, sunken, and white in the center with a dark brown to black halo, up to 4 mm in diameter. Acervuli were found under a dissecting microscope on infected leaf lesions with black spines or setae. Occasionally, small, circular, often longitudinal dark brown spots appeared on leaf branches. Leaf tissues (5 × 5 mm) from lesion margins were surface sterilized in 0.9% sodium hypochlorite for 10 min, rinsed with sterile distilled water, and plated on potato dextrose agar (PDA). PDA plates were incubated at 21°C under 24-h fluorescent lights for 4 to 6 days. The fungus initially produced gray mycelium followed by orange conidial mass. Hyphae of the fungus were septate and hyaline. After 5 to 7 days, the fungus produced acervuli with dark brown to black setae (75 to 130 μm long) (n = 20). Conidia were found in the colonies, which were single celled, oblong, hyaline, and 12 to 25 × 4 to 6 μm (n = 20). The cultural and morphological characteristics of the conidia were similar to those for Colletotrichum higginsianum Sacc (1). To further confirm the species of the isolates, the sequence of the ITS region of rDNA, chitin synthase 1 (CHS1), and actin (ACT) was amplified from isolates 05131 and 05132 using primer pairs ITS 1 and ITS 4 (4), CHS-79F and CHS-354R, and ACT-512F and ACT-783R (3), respectively. The sequenced data of each locus were deposited in GenBank with accessions KF550281.1, KF550282.1, KJ159904, KJ159905, KJ159906, and KJ159907. The resulting sequence of ITS showed 100% identity with sequences of C. higginsianum in JQ005760.1, and sequence of ACT gene showed 100% identity with C. higginsianum in JQ005823.1. The sequence of ACT gene and ITS region had ≤99% identity with other closely related Colletotrichum spp. CHS1 gene had 100% identity with JQ005781.1 belonging to C. higginsianum, and one accession JQ005783.1 belonging to C. fuscum. However, ACT gene and ITS region does not share 100% identity with C. fuscum and therefore, sequence data from three loci proves that isolated pathogen is C. higginsianum. All the above mentioned accessions that shared 100% identity with sequences of isolates used in our study have been previously used to represent the species in the C. destructivum clade in a systematics study (2). To confirm its pathogenicity, a suspension of isolate 05132 at 5 × 105 conidia/ml was sprayed on leaves of five arugula plants until runoff. The other five arugula plants sprayed with water served as non-inoculated controls. Both inoculated and non-inoculated plants were separately covered with a plastic bag to maintain high humidity for 24 h at 27 ± 5°C under natural day/night conditions in the greenhouse. Symptoms first appeared 3 to 4 days after inoculation as small water-soaked lesions, which became sunken with dark brown to black margins. Small circular and longitudinal dark brown spots were also seen on leaf branches as seen initially on naturally infected arugula. No symptoms developed on non-inoculated control plants. C. higginsianum was re-isolated from the lesions with the same morphological characteristics as described above, fulfilling Koch's postulates. To our knowledge, this is the first report of C. higginsianum causing anthracnose of arugula in Florida. This pathogen may potentially affect the salad industry in the United States. References: (1) A. J. Caesar et al. Plant Dis. 94:1166, 2010. (2) P. F. Cannon et al. Stud. Mycol. 73:181, 2012. (3) I. Carbone and L. M. Kohn. Mycologia 91:553, 1999. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1064-1064 ◽  
Author(s):  
M. Zhang ◽  
H. Y. Wu ◽  
T. Tsukiboshi ◽  
I. Okabe

Hidcote, Hypericum patulum Thunb. ex Murray, is a deciduous shrub that is cultivated as an ornamental in landscape gardens and courtyards in Japan. In early August 2008, severe leaf spotting was observed on plants growing in a courtyard in Nasushiobara, Tochigi, Japan. More than 30% of the leaves on five shrubs exhibited leaf spot symptoms. Small, round, pale brown lesions were initially observed. Later, they expanded to 5 to 12 mm in diameter, round to irregular-shaped with pale brown centers and dark brown margins. Under continuously wet or humid conditions, black acervuli developed on the leaf lesions. Conidia were straight or slightly curved, fusiform to clavate, and five-celled with constrictions at the septa. Conidia ranged from 17 to 21 × 5 to 8 μm with hyaline apical and basal cells. Fifteen percent of apical cells had two and the rest had three appendages (setulae) ranging from 10 to 21 μm long. The basal hyaline cell tapered into a 2 to 4 μm pedicel. The three median cells ranged from light or dark brown to olive green. These morphological characteristics matched those of Pestalotiopsis microspora (Speg.) G.C. Zhao & N. Li (1,2). The identity of the fungus was confirmed by DNA sequencing of the internal transcribed spacer (ITS) region (GenBank Accession No. GU908473) from single-spore isolates, which revealed 100% homology with those of other P. microspora isolates (e.g., GenBank Accession Nos. FJ459950 and DQ456865). Koch's postulates were confirmed using leaves of three detached branches of a field-grown asymptomatic plant of H. patulum. Thirty leaves of each branch were inoculated by placing mycelial plugs obtained from the periphery of 7-day-old single-spore cultures on the leaf surface. Potato dextrose agar plugs without mycelium served as controls. Leaves on branches were covered with plastic bags for 24 h to maintain high relative humidity in a greenhouse (approximately 24 to 28°C). After 5 days, all inoculated leaves showed symptoms identical to those described above, whereas control leaves remained symptom free. Reisolation of the fungus from lesions on inoculated leaves confirmed that the causal agent was P. microspora. To our knowledge, this is the first report of leaf spots on H. patulum caused by P. microspora in Japan. Management options may have to be developed and implemented to protect Hidcote plants in areas where leaf spot cannot be tolerated. References: (1) P. A. Saccardo. Sylloge Fungorum III:789, 1884. (2) G. C. Zhao and N. Li. J. Northeast For. Univ. 23(4):21, 1995.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1254-1254 ◽  
Author(s):  
J. Sun ◽  
D.-M. Wang ◽  
X.-Y. Huang ◽  
Z.-H. Liu

Hazel (Corylus heterophylla Fischl) is an important nut tree grown in China, especially in Liaoning Province, and is rich in nutritional and medicinal values. In August 2011, leaf spotting was observed on hybrid hazel (Dawei) leaves in Paotai Town, Wafangdian County of Liaoning Province. By August 2012, the disease had spread to Zhangdang Town, Fushun County. Symptoms initially appeared on both sides of leaves as pinpoint brown spots, which enlarged and developed into regular, dark brown lesions, 3 to 9 mm in diameter. The lesions were lighter in color in the center compared to the margin. To identify the pathogen, leaf pieces (3 to 5 mm) taken from the margins, including both symptomatic and healthy portions of leaf tissue, were surface-disinfected first in 75% ethanol for 5 s, next in 0.1% aqueous mercuric chloride for 50 s, and then rinsed with sterilized water three times. Leaf pieces were incubated on potato dextrose agar (PDA) at 25°C for 14 days in darkness. Single spore isolates were obtained from individual conidia. For studies of microscopic morphology, isolates were grown on synthetic nutrient agar (SNA) in slide cultures. Colonies grew up to 45 to 48 mm in diameter on PDA after 14 days. Pycnidia appeared on the colonies after 12 days. Conidiophores were short. Pycnidia were dark brown, subglobose, and 150 to 205 μm in diameter. Conidia were unicellular, colorless, ovoid to oval, and from 2.4 to 4.5 × 1.6 to 2.4 μm. On the basis of these morphological characteristics, the isolates were tentatively identified as Phyllosticta coryli Westend (2). The rDNA internal transcribed spacer (ITS) region was amplified using primers ITS1 and ITS4 and sequenced (GenBank Accession No. KC196068). The 490-bp amplicons had 100% identity to an undescribed Phyllosticta species isolated from Cornus macrophylla in Gansu, Tianshui, China (AB470897). On the basis of morphological characteristics and nucleotide homology, the isolate was tentatively identified as P. coryli. Koch's postulates were fulfilled in the growth chamber on hazelnut leaves inoculated with P. coryli conidial suspensions (107 conidia ml–1). Eight inoculated 1-year-old seedlings (Dawei) were incubated under moist conditions for 8 to 10 days at 25°C. All leaf spots that developed on inoculated leaves were similar in appearance to those observed on diseased hazel leaves in the field. P. coryli was recovered from lesions and its identity was confirmed by morphological characteristics. P. coryli was first reported as a pathogen of hazel leaves in Bull of Belgium (2). In China, P. coryli was first reported on Corylus heterophylla Fisch. in Jilin Province (1). To our knowledge, this is the first report of P. coryli causing leaf spot on hybrid hazel in Liaoning Province of China. The outbreak and spread of this disease may decrease the yield of hazelnut in northern regions of China. More studies are needed on control strategies, including the possible resistance of hazel cultivars to P. coryli. References: (1) Y. Li et al. J. Shenyang Agric. Univ. 25:153, 1994. (2) P. A. Saccardo. Sylloge Fungorum Vol. III, page 31, 1884.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1072-1072 ◽  
Author(s):  
M. J. Park ◽  
S. E. Cho ◽  
J. H. Park ◽  
S. K. Lee ◽  
H. D. Shin

Hydrangea macrophylla (Thunb.) Ser., known as mophead hydrangea, is native to Japan and is used as a potted ornamental or is planted for landscaping in gardens worldwide. In May 2011, powdery mildew occurred on potted mophead hydrangea cv. Emerald plants in polyethylene-film-covered greenhouses in Icheon, Korea. Heavily infected plantings were unmarketable, mainly due to purplish red discoloration and crinkling of leaves. Such powdery mildew symptoms on mophead hydrangea in gardens had been often found in Korea since 2001, and the collections (n = 10) were deposited in the Korea University herbarium (KUS). In all cases, there was no trace of chasmothecia formation. Mycelium was effuse on both sides of leaves, young stems, and flower petals. Appressoria were well developed, lobed, and solitary or in opposite pairs. Conidiophores were cylindrical, 70 to 145 × 7.5 to 10 μm, and composed of three to four cells. Foot-cells of conidiophores were straight to sub-straight, cylindric, short, and mostly less than 30 μm long. Conidia produced singly were ellipsoid to oval, 32 to 50 × 14 to 22 μm with a length/width ratio of 1.7 to 2.8, lacked fibrosin bodies, and showed angular/rectangular wrinkling of outer walls. Germ tubes were produced on the perihilar position of conidia. Primary conidia were apically conical, basally rounded to subtruncate, 32 to 42 × 14 to 18 μm, and thus generally smaller than the secondary conidia. The morphological characteristics are consistent with previous descriptions of Oidium hortensiae Jørst. (3,4). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA from KUS-F25514 was amplified with primers ITS5 and P3 and directly sequenced. The resulting sequence of 694 bp was deposited in GenBank (Accession No. JQ669944). There was no ITS sequence data known from powdery mildews on Hydrangea. Therefore, this is the first sequence of O. hortensiae submitted to GenBank. Nevertheless, a GenBank BLAST search of this sequence showed >99% similarity with those of Oidium spp. recorded on crassulacean hosts (e.g. GenBank Accession Nos. EU185641 ex Sedum, EU185636 ex Echeveria, and EU185639 ex Dudleya) (2), suggesting their close phylogenetic relationship. Pathogenicity was confirmed through inoculation by gently pressing diseased leaves onto leaves of five healthy potted mophead hydrangea cv. Emerald plants. Five noninoculated plants of the same cultivar served as controls. Plants were maintained in a greenhouse at 22 ± 2°C. Inoculated plants developed signs and symptoms after 6 days, whereas the control plants remained healthy. The fungus present on the inoculated plants was morphologically identical to that originally observed on diseased plants, fulfilling Koch's postulates. Occurrence of powdery mildew disease on mophead hydrangea is circumglobal (1). To our knowledge, this is the first report of powdery mildew disease caused by O. hortensiae on mophead hydrangea in Korea. Powdery mildew infections in Korea pose a serious threat to the continued production of quality potted mophead hydrangea in polyethylene-film-covered greenhouses. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved March 19, 2012, from http://nt.ars-grin.gov/fungaldatabases/ . (2) B. Henricot. Plant Pathol. 57:779, 2008. (3) A. Schmidt and M. Scholler. Mycotaxon 115:287, 2011. (4) S. Tanda. J. Agric. Sci. Tokyo Univ. Agric. 43:253, 1999.


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1370-1370 ◽  
Author(s):  
S. Kiewnick ◽  
G. Karssen ◽  
J. A. Brito ◽  
M. Oggenfuss ◽  
J.-E. Frey

Severe stunting and extensive root galling were observed on tomato rootstock (Solanum lycopersicum L. cv. Maxifort) resistant to Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949, M. javanica (Treub, 1885), and M. arenaria (Neal, 1889) Chitwood, 1949 and cucumber (Cucumis sativus L. cv. Loustik) from two commercial greenhouses in the cantons Aargau and Lucerne in northern Switzerland. Examination of the roots of infected plants revealed the presence of root-knot nematodes in large numbers. Juveniles, males, and females were isolated, and the species was determined on the basis of morphological characteristics, including the female perineal pattern. Identification was confirmed by female esterase (Est) and malate dehydrogenase (MdH) electrophoresis (20 each for Est and MdH). All methods of identification were consistent with M. enterolobii Yang & Eisenback, 1983 (4). For further confirmation, type material of M. enterolobii (from the original host Enterolobium contortisiliquum (Vell.) Morong) from China (4) was used. Furthermore, comparison of the sequence data from 12 individuals of each of the two Swiss populations and the type material of a 310-bp fragment of cytochrome oxidase I (COI), a 723-bp fragment covering the internal transcribed spacer (ITS) region 1, 5.8s, ITS2, and part of the 26s, the mtDNA 63-bp repeat region, and a 780-bp fragment of the intergenic spacer region (1–3) showed 100% homology and confirmed the identification as M. enterolobii. The species M. enterolobii is of great importance because it is able to reproduce on resistant tobacco, pepper, watermelon, and tomato (4). To our knowledge, this is the first report of M. enterolobii in Switzerland. References: (1) M. A. M. Adam et al. Plant Pathol. 56:190, 2007. (2) V. C. Blok et al. Nematology 4:773, 2002. (3) T. C. Vrain et al. Fundam. Appl. Nematol. 15:565, 1992. (4) B. Yang and J. D. Eisenback. J. Nematol. 15:381, 1983.


Sign in / Sign up

Export Citation Format

Share Document