scholarly journals First Report of Watermelon chlorotic stunt virus Infecting Watermelon in Saudi Arabia

Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1451-1451 ◽  
Author(s):  
M. A. Al-Saleh ◽  
M. H. Ahmad ◽  
I. M. Al-Shahwan ◽  
J. K. Brown ◽  
A. M. Idris

In the Saudi Arabian deserts, watermelon [Citrullus lanatus (Thunb.)] is cultivated in the lowlands and wadis (washes) where water accumulates following rainfall, and where heat, salt, and drought stress are common constraints on production. During the spring of 2014, watermelon leaves exhibited yellowing and severe chlorotic mottling symptoms. The foliar symptoms were reminiscent of Watermelon chlorotic stunt virus (WmCSV), a bipartite begomovirus previously reported in several neighboring countries (1,3). Ten samples were collected from three farms in the Leith region, where 100% of the watermelon plants were symptomatic. Total nucleic acids were extracted from the symptomatic watermelon plants and were subjected to PCR using WmCSV DNA-A specific primers designed based on a complete genome sequence (GenBank Accession No. AJ012081), WmCSVF-3′-CGTGCTGTTGCCCCCACTGT-5′ and WmCSVR-3′-CCTGCATATCTCGTGCCAGAATC-5′ to obtain an expected size fragment of 1,111 bp located between the nucleotide (nt) coordinates 400-1510. The amplicons (one per sample) were cloned, and the DNA sequence was determined for each and used to search the NCBI database. The top hits for sequences obtained from all 10 samples were to WmSCV sequences, with shared nt identity values of 97 to 98%. To clone the full-length begomoviral DNA-A and DNA-B components, nucleic acids were subjected to rolling circle amplification (RCA) (2). The RCA products were cloned into the pGEM7 plasmid vector using the unique restriction sites, identified as HindIII for DNA-A, and as EcoRI for DNA-B, respectively. Ten DNA-A clones and two DNA-B component clones were sequenced. The DNA-A components ranged in size from 2,751 (KM066100) to 2,752 bp (KJ939448), whereas the DNA-B components were 2,757 bp in size (KJ939447). Analysis of the viral sequences from the DNA-A clones indicated they had the characteristics of a typical genome of a begomovirus DNA-A component that consist of a hairpin stem-loop structure in the intergenic region, two tandem copies of the iteron (TGGAGAC) located between the nt coordinates 2675 and 2680, 2682 and 2688 predicted to be involved in Rep binding, and six predicted genes encoding proteins with high sequence identity to those encoded by other WmCSV isolates. The 10 DNA-A component sequences were aligned with sequences for previously described WmCSV isolates available in GenBank using Muscle, followed by pairwise comparisons using SDT software (4). The analysis revealed that the cloned DNA-A components shared 99 to 100% nt sequence identity with each other, and 97 to 98% nt identity with WmCSV isolates reported from Yemen (AJ012081), Jordan (EU561237), Iran (AJ245652), and Sudan (AJ245650). Further, the WmCSV DNA-B from Saudi Arabia shared the highest nt identity with sequences from Yemen (AJ012082) at 96%, Iran (AJ245653) at 95%, and only 94% with DNA-B from both Sudan (AJ245651) and Jordan (EU561236). To our knowledge, this is the first report of WmCSV in Saudi Arabia. WmCSV poses a serious threat to the production of this highly valued crop in Saudi Arabia and considerably reduces crop yield (1). References: (1) I. D. Bedford et al. Eur. J. Plant Pathol. 100:243, 1994. (2) A. Idris et al. Plant Dis. 97:910, 2007. (3) A. Kheyr-Pour et al. Phytopathology 90:629, 2000. (4) B. Muhire et al. Arch. Virol. 158:1411, 2013.

Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 149-149 ◽  
Author(s):  
M. S. Ali-Shtayeh ◽  
R. M. Jamous ◽  
E. Y. Hussein ◽  
O. B. Mallah ◽  
S. Y. Abu-Zaitoun

In the summer of 2010, watermelon plants (Citrullus lanatus Thunb.) from eight fields surveyed in two districts (Jenin and Qalqilia) in the West Bank of the Palestinian Authority (PA) exhibited typical Watermelon chlorotic stunt virus (WmCSV) symptoms including yellow veining, chlorotic mottling, stunting of young leaves, and reduction of yield. Disease incidence ranged from 8 to 98% and was associated with whitefly (Bemisia tabaci) infestation. In symptomatic leaves of 79 of 215 watermelon plants examined, geminiviral DNA was detected by PCR (3) and rolling circle amplification (RCA) (2). Geminivirus DNA-A and DNA-B component fragments were amplified by PCR using degenerated and specific primers (3). The full-length DNA-A of WmCSV-[PAL] was amplified from field-collected watermelon plants using WAI-XbaI-(v)/WAI-XbaI-(c) primer pair, and the generated PCR product was sequenced (3). A DNA-A fragment (2,017 bp) (GenBank Accession No JN673223) comprising a conserved region of the coat protein (AV1), AC5, AC3, AC1, and AC2 genes, showed 99, 99, 99, 98, 98, and 97% nucleotide identity with sequences of WmCSV isolates from Jordan (GenBank Accession No. EU561237), Israel (LEF201809), Lebanon (HM368371), Sudan (AJ245650), Iran (AJ245652), and Yemen (AJ012081), respectively. The circular genomic DNA-A and DNA-B of WmCSV-[PAL] were amplified from a whitefly-inoculated watermelon plant by RCA (2) and used to inoculate 30 watermelon plants with a nonvacuum gene gun (4). Typical WmCSV symptoms developed in all these plants 4 weeks postinoculation and virus infection was confirmed by PCR. In 2011, WmCSV was detected from the southern and eastern parts of neighboring Jordan (1). The new emergent disease in the PA was detected in all of the surveyed watermelon fields in regions where cucurbits are intensively grown, only a few kilometers east of Israel. This suggests that the introduction of WmCSV to the PA might have occurred through transplant movement between Israel and the PA or through viruliferous whiteflies that moved from infected plants in Israel to neighboring fields in Jenin and Qalqilia districts. This is in accordance with the observation that disease incidence was always associated with high population of B. tabaci. The virus endangers the production of watermelon in the affected areas to the point of becoming the limiting factor of growing watermelon in open fields. To our knowledge, this is the first report of WmCSV infecting cucurbits in the PA. References: (1) A. Al-Musa et al. Virus Genes 43:79, 2011. (2) H. Jeske. Curr. Topics Microbiol. Immunol. 331:185, 2009. (3) A. Kheyr-Pour et al. Phytopathology 90:629, 2000. (4) S. Sikorskaite et al. J. Virol. Methods 165:320, 2010.


Author(s):  

Abstract A new distribution map is provided for Watermelon chlorotic stunt virus. Geminiviridae: Begomovirus. Hosts: Cucurbitaceae including watermelon (Citrullus lanatus), melon (Cucumis melo) and cucumber (Cucumis sativus) and Solanaceae including tomato (Solanum lycopersicum). Information is given on the geographical distribution in Asia (Iran, Israel, Jordan, Lebanon, Oman, Saudi Arabia and Yemen) and Africa (Sudan).


2021 ◽  
Vol 25 (04) ◽  
pp. 859-862
Author(s):  
Muhammad Shafiq Shahid

Cucumber (Cucumis sativus; family Cucurbitaceae) plants exhibiting begomovirus-like symptoms such as yellowing, mosaics and stunting were studied using cloning, sequencing, Species Demarcation Tool followed by phylogenetic clustering. The complete genome of DNA-A showed maximum sequence identity of 98.7% with the corresponding DNA-A of an isolate from “Iran” strain of Watermelon chlorotic stunt virus (WmCSV). The DNA-B displayed 97.5% nt identity with the component of DNA-B of WmCSV from Iran, too. Our results confirmed that yellowing and mosaic symptoms of cucumber are associated with a bipartite begomovirus (WmCSV). This study is the first characterization of WmCSV in association with described symptoms in cucumber from Oman. © 2021 Friends Science Publishers


Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 648-648 ◽  
Author(s):  
F. Akad ◽  
S. Webb ◽  
T. W. Nyoike ◽  
O. E. Liburd ◽  
W. Turechek ◽  
...  

In October of 2006, yellow straightneck and zucchini squash plants (Cucurbita pepo L.) with crumpled, curled, thickened leaves were found in St. Johns and Marion counties in central Florida, respectively. Both locations had high populations of the whitefly, Bemisia tabaci. Incidences of symptomatic plants were greater than 95% in three squash fields (33 ha total) in St. Johns County and 35% in an experimental plot in Marion County. Twenty-three samples were collected from symptomatic plants (two from St. Johns County and 21 from Marion County). DNA was extracted for PCR and tested for the presence of begomoviruses using the following pairs of degenerate primers: AC1048/AV494, which amplifies a conserved region of the coat protein gene (2), PAR1c496/PAL1v1978, which amplifies a region of the begomovirus A component, and PBL1v2040/PCRc154, which amplifies a hypervariable region of the begomovirus B component (1). All squash samples yielded amplicons of sizes expected for a bipartite begomovirus: 1,159 nt with PAR1c496/PAL1v1978, 550 nt with AC1048/AV494, and 493 nt with PBL1v2040/PCRc154. The 1,159- and 493-nt amplicons obtained from two squash plants were cloned and sequenced. The 1,159 nt sequences from both plants shared 98% sequence identity with each other and 97% identity with equivalent regions of the A component of Cucurbit leaf crumple virus (CuLCrV) from Arizona and California (GenBank Accession Nos. AF256200 and AF224760, respectively). The 493-nt sequences amplified with PBL1v2040/PCRc154 were identical and shared a 96% identity with CuLCrV sequence (GenBank Accession No. AF327559) from Arizona and 97% identity with CuLCrV B component sequence (GenBank Accession No. AF224761) from California. Leaves were collected from eight symptomatic squash plants from Citra, FL and used for whitefly transmission assays. Approximately 100 adults of Bemisia tabaci biotype B were released onto each caged leaf and given a 24-h acquisition access period, after which a healthy squash seedling was introduced. Symptoms developed within 10 days on all test plants, and the presence of CuLCrV was confirmed by PCR assays, (primer pairs PAR1c496/PAL1v1978 and PBL1v2040/PCRc154) followed by sequencing. In 2007, similar symptoms were seen in several locations around the state. The same assays confirmed the presence of CuLCrV in watermelon (Citrullus lanatus L.) and squash in the following counties: Collier and Hendry in southwest Florida and Hillsborough, Manatee, and Sarasota in west-central Florida. To our knowledge, this is the first report of CuLCrV, and the first report of any begomovirus in cucurbits in Florida. References: (1) M. R. Rojas et al. Plant Dis. 77:340, 1993. (2) S. D. Wyatt and J. K. Brown. Phytopathology 86:1288, 1996.


Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1321-1321 ◽  
Author(s):  
A. Najar ◽  
S. Kumari ◽  
N. Attar ◽  
S. Lababidi

During a survey of legume crops in the northeast and northwest regions of Tunisia in April 2010, plants showing yellowing, reddening, and stunting symptoms were observed. A total of 281 symptomatic samples were collected: 142 plants from 10 chickpea (Cicer arietinum L.) fields, 84 plants from six faba bean (Vicia faba L.) fields, and 55 plants from six pea (Pisum sativum L.) fields. All samples were tested by the tissue-blot immunoassay procedure with the following monoclonal antibodies (MAbs): a broad-spectrum legume-luteovirus MAb (5G4), Faba bean necrotic yellows virus (FBNYV; genus Nanovirus, family Nanovirudae) (3-2E9; provided by J. Vetten, BBA, Braunschweig, Germany), Beet western yellows virus (BWYV; genus Polerovirus, family Luteoviridae) (A5977; Agdia, Elkhart, IN), Bean leafroll virus (BLRV; genus Luteovirus, family Luteoviridae) (4B10), Soybean dwarf virus (SbDV; genus Luteovirus, family Luteoviridae) (ATCC PVAS-650; American Type Culture Collection ATCC, Rockville, MD,), and a mixture of three MAbs (5-2B8, -3D5, and -5B8) to a Syrian isolate of Chickpea chlorotic stunt virus (CpCSV) (1). Serological tests showed that CpCSV was detected in 121 samples (43.06%) (62 chickpea, 57 faba bean, and 2 pea), followed by FBNYV (detected in three faba bean and three pea), BWYV (detected in three chickpea and one faba bean), and BLRV (detected in one pea sample). FBNYV, BLRV, and BWYV have been previously detected in faba bean and chickpea in Tunisia (4), but to our knowledge, this is the first report of CpCSV affecting legumes in Tunisia, which was found in seven chickpea, seven faba bean, and two pea fields. CpCSV has been reported to naturally infect legume crops such as chickpea, lentil, field pea, and faba bean as well as some leguminous weeds and a few wild non-legume plants species in many countries in West Asia and North Africa and causes economic losses on chickpea in Eritrea, Ethiopia, and Syria (1–3). Serological results of CpCSV was confirmed in four (two pea, one faba bean, and one chickpea) samples by reverse transcription (RT)-PCR using CpCSV specific primers (F:5′-TAGGCGTACTGTTCAGCGGG-3′ and R:5′-TCCTTTGTCCATTCGAGGTGA-3′) (3), which produced an amplicon of expected size (413 bp). No amplification was observed from healthy plant extracts. Sequence analysis revealed that the four Tunisian isolates (TuV 258-201 collected from faba bean [GenBank Accession No. HQ199310], TuC 215-201 collected from chickpea [HQ199307], and TuP 163-201 [HQ199308] and TuP 166-201 collected from pea [HQ199309]) were most similar to each other with a high sequence identity (99%) and clustered with isolates of CpCSV from Syria (GenBank Accession No. EU541270), Egypt (EU541269), and Morocco (EU541267), to which they were most closely related (98%). The Tunisian isolates also showed high sequence identity (96%) in the coat protein region with Ethiopian (GenBank Accession No. EU541257) and Sudanese (EU541263) isolates. However, all isolates are distinct from BWYV, BLRV, and SbDV (less than 70% sequence identity). Since CpCSV is transmitted by aphids only, additional studies are needed to identify the host range of the virus and the efficient aphid vectors to better understand the epidemiology of this virus under Tunisian conditions References: (1) A. D. Abraham et al. Arch.Virol. 154:791; 2009. (2) N. Y. Asaad et al. J. Phytopathol. 157:756, 2009. (3) S. G. Kumari et al. Phytopathol. Mediterr. 47:42, 2008. (4) A. Najar et al. Phytopathol. Mediterr. 39:423, 2000.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1588-1588
Author(s):  
S. B. Zhang ◽  
Z. G. Du ◽  
Z. Wang ◽  
Y. F. Tang ◽  
X. M. She ◽  
...  

In September 2013, tall morning glory (Ipomoea purpurea) plants showing vein yellowing and leaf curl symptoms typical of a begomovirus infection were observed in Jingzhou, Hubei Province, China. Total nucleic acids were extracted from a symptomatic plant using cetyltrimethylammonium bromide (CTAB). Rolling circle amplification (RCA) was conducted using TempliPhi kit (GE Healthcare) to recover the genome of a putative begomovirus. Digestion of the RCA product with PstI yielded a ~2.8 kbp DNA fragment suggestive of a monomerized begomoviral genome. The fragment was cloned and sequenced and the sequence was deposited in GenBank under accession no. KF769447. SDTv1.0 (species demarcation tool) analysis revealed that the putative begomovirus showed 98.5 and 92.0% nucleotide sequence identity with Sweet potato leaf curl Georgia virus (SPLCGV)-[China:Hebei:2011] (GenBank Accession No. JX448368) and SPLCGV-[US:Geo:16] (AF326775), respectively. The virus contained six ORFs, which encoded proteins showing 96.5 to 100% and 90.6 to 95.6% amino acid sequence identity with their counterparts of SPLCGV-[China:Hebei:2011] and SPLCGV-[US:Geo:16], respectively. Thus, the virus should be considered as an isolate of SPLCGV-[China:Hebei:2011]. Tall glory morning in a nearby field (which covers an area of 3 square kilometers) was surveyed and 70 to 100% of plants were found showing symptoms reminiscent of begomoviral infection. Total nucleic acid was extracted from 13 randomly selected (10 symptomatic and 3 healthy) plants and used as templates for PCR with a pair of specific primers (5′-CGCAGCCTTTCCACACTATC-3′/5′-AAAACAGTTTGGGCTCGGTC-3′) designed according to the sequence described above. Positive results were obtained for all of the symptomatic, but none of the healthy-looking tall morning glory plants. SPLCGV (genus Begomovirus, family Geminiviridae) was reported to infect sweet potato (I. batatas) in the United States (4), India (2), and China (3). To our knowledge, this is the first report of SPLCGV infecting tall morning glory in China. Also, it is the first report of a geminivirus in Hubei, a province of central China. Whereas the finding of SPLCGV in sweet potato (3) may be a result of vegetative propagation of this crop, the detection of SPLCGV in tall morning glory, an annual plant, raises the possibility that this virus is transmissible and is spreading in China. References: (1) B. Muhire et al. Arch. Virol. 158:1411, 2013. (2) G. Prasanth and V. Hegde. Plant Dis. 92:311, 2008. (3) Y. Qin et al. Plant Dis. 97:1388, 2013. (4) R. A. Valverde and D. L. Gutierrez. Rev. Mex. Fitopatol. 21:128, 2003.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 428-428 ◽  
Author(s):  
Y. F. Tang ◽  
Z. F. He ◽  
Z. G. Du ◽  
L. H. Lu

Tomato yellow leaf curl Kanchanaburi virus (TYLCKaV) is a bipartite begomovirus (genus Begomovirus, family Geminiviridae) reported to infect tomato and eggplant in Thailand and Vietnam (1,2). In April 2013, eggplant (Solanum melongena L.) plants exhibiting yellow mosaic symptoms were found in a suburb of Vientiane, Laos. Three symptomatic samples were collected. Total DNA was extracted from leaves by the CTAB method, and used as template for PCR using the degenerate primer pair AV494/CoPR (3). The PCR results suggested that the plants were infected by a begomovirus. The begomoviral genome was amplified by rolling circle amplification (RCA) with TempliPhi kit (GE Healthcare) following the manufacturer's protocol. RCA product was digested with the endonucleases BamH I, EcoR I, Hind III, Kpn I, Pst I, and Xba I, respectively. The fragments about 2.1 kbp (with Pst I digestion) and 1.5 kbp (with Xba I digestion) in size were cloned and sequenced. The sequence of the 2.1-kbp fragment showed similarity with begomovirus DNA-A component. A pair of primers for amplification of the full-length DNA-A, AF (5′-CTTCATCGTTTCTCAGCATCAT-3′) and AR (5′-CACTTGCACACGATCTCTAAGA-3′) were designed from the 2.1-kbp sequence. The full-length DNA-A was 2,752 nucleotides and encoded six putative ORFs (GenBank Accession No. KF218820). The sequence of the 1.5-kbp fragment shared similarity with begomoviruses DNA-B. The begomoviral circular DNA-B was amplified using the pair of primers BF (5′-GTAACAGCCGAAGTGCACG-3′) and BR (5′-AATGGAGAGACACCAGTCTGCC-3′) designed from the 1.5-kbp sequence. PCR yielded a product of expected size (~1.4 kbp). The full-length DNA-B sequence was obtained by assembling the two sequences. The DNA-B was 2,734 nucleotides and encoded two putative ORFs (GenBank Accession No. KF218821). The sequences of DNA-A and DNA-B of isolate Laos shared the highest nucleotide sequences identities at 99.0% and 98.0% with those of TYLCKaV-[TH:Kan 1:01] (AF511529), and [TH:Kan 2:Egg:01] (AF511527), respectively. The results indicated that the virus associated with eggplant yellow mosaic disease was an isolate of TYLCKaV. To our knowledge, this is the first report of this begomovirus in Laos. Our results indicate that this virus may be spreading in Southeast Asia and scientists there should be aware of this virus when developing begomovirus-resistant varieties of tomato or eggplant. References: (1) S. K. Green et al. Plant Dis. 87:446, 2003. (2) C. Ha et al. J. Gen. Virol. 89:312, 2008.(3) Z. F. He et al. Arch. Virol. 154:1199, 2009.


Sign in / Sign up

Export Citation Format

Share Document