scholarly journals Effects of Consecutive Streptomycin and Kasugamycin Applications on Epiphytic Bacteria in the Apple Phyllosphere

Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 158-164 ◽  
Author(s):  
K. A. Tancos ◽  
K. D. Cox

Antibiotic applications are essential for fire blight management in the eastern United States. Recently, streptomycin-resistant Erwinia amylovora strains were found in New York. There are growing concerns that streptomycin resistance may develop from postbloom streptomycin applications in local orchards. Our goal was to investigate the impacts of increasing streptomycin and kasugamycin applications on bacterial epiphyte community composition and antibiotic resistance in the phyllosphere of ‘Idared’ apple plantings in 2014 and 2015. Rinsate samples from leaves treated with 0, 3, 5, and 10 applications of streptomycin and kasugamycin were collected to isolate, enumerate, and identify epiphytic bacterial species. The majority of isolated epiphytic bacteria were identified as Pantoea agglomerans and fluorescent Pseudomonas spp., whereas E. amylovora was rarely found. Overall, postbloom streptomycin use did not result in an increased recovery of streptomycin-resistant E. amylovora. However, other streptomycin-resistant epiphytes (P. agglomerans and Pseudomonas spp.) did increase with increasing streptomycin applications. Increasing kasugamycin applications reduced the overall number and percentage of streptomycin-resistant epiphytes in the phyllosphere, which has important implications regarding the use of kasugamycin in orchards where streptomycin resistance is a concern.

Plant Disease ◽  
2021 ◽  
Author(s):  
Anna Wallis ◽  
Isabella Magna Yannuzzi ◽  
Mei-Wah Choi ◽  
John Spafford ◽  
Matthew Siemon ◽  
...  

Fire blight, caused by the bacterium Erwinia amylovora, is one of the most important diseases of apple. The antibiotic streptomycin is routinely used in the commercial apple industries of New York and New England to manage the disease. In 2002, and again from 2011 to 2014, outbreaks of streptomycin resistance (SmR) were reported and investigated in NY. Motivated by new grower reports of control failures, we conducted a follow-up investigation of the distribution of SmR and E. amylovora strains for major apple production regions of NY over the last six years (2015-2020). Characterization of clustered regularly interspaced short palindromic repeat (CRISPR) profiles revealed that a few ‘cosmopolitan’ strains were widely prevalent across regions, while many other ‘resident’ strains were confined to one location. In addition, we uncovered novel CRISPR profile diversity in all investigated regions. SmR E. amylovora was detected only in a small area spanning two counties from 2017 to 2020, and always associated with one CRISPR profile (41:23:38), which matched the profile of SmR E. amylovora discovered in 2002. This suggests the original SmR E. amylovora was never fully eradicated and went undetected due to several seasons of low disease pressure in this region. Investigation of several representative isolates under controlled greenhouse conditions indicated significant differences in aggressiveness on ‘Gala’ apples. Potential implications of strain differences include the propensity of strains to become distributed across wide geographic regions and associated resistance management practices. Results from this work will directly influence sustainable fire blight management recommendations for commercial apple industries in NY State and other regions.


Plant Disease ◽  
2016 ◽  
Vol 100 (4) ◽  
pp. 802-809 ◽  
Author(s):  
K. A. Tancos ◽  
S. Villani ◽  
S. Kuehne ◽  
E. Borejsza-Wysocka ◽  
D. Breth ◽  
...  

Resistance to streptomycin in Erwinia amylovora was first observed in the United States in the 1970s but was not found in New York until 2002, when streptomycin-resistant (SmR) E. amylovora was isolated from orchards in Wayne County. From 2011 to 2014, in total, 591 fire blight samples representing shoot blight, blossom blight, and rootstock blight were collected from 80 apple orchards in New York. From these samples, 1,280 isolates of E. amylovora were obtained and assessed for streptomycin resistance. In all, 34 SmR E. amylovora isolates were obtained from 19 individual commercial orchards. The majority of the resistant isolates were collected from orchards in Wayne County, and the remaining were from other counties in western New York. Of the 34 resistant isolates, 32 contained the streptomycin resistance gene pair strA/strB in the transposon Tn5393 on the nonconjugative plasmid pEA29. This determinant of streptomycin resistance has only been found in SmR E. amylovora isolates from Michigan and the SmR E. amylovora isolates discovered in Wayne County, NY in 2002. Currently, our data indicate that SmR E. amylovora is restricted to counties in western New York and is concentrated in the county with the original outbreak. Because the resistance is primarily present on the nonconjugative plasmid, it is possible that SmR has been present in Wayne County since the introduction in 2002, and has spread within and out of Wayne County to additional commercial growers over the past decade. However, research is still needed to provide in-depth understanding of the origin and spread of the newly discovered SmR E. amylovora to reduce the spread of streptomycin resistance into other apple-growing regions, and address the sustainability of streptomycin use for fire blight management in New York.


Plant Disease ◽  
2008 ◽  
Vol 92 (5) ◽  
pp. 714-718 ◽  
Author(s):  
Nicole L. Russo ◽  
Thomas J. Burr ◽  
Deborah I. Breth ◽  
Herb S. Aldwinckle

Streptomycin is currently the only antibiotic registered for the control of fire blight, a devastating disease of apple (Malus), pear (Pyrus), and other rosaceous plants caused by the bacterium Erwinia amylovora. Resistance of E. amylovora to streptomycin was first identified in California pear orchards in 1971 and is currently endemic in many parts of the United States. The Northeast remains the only major U.S. apple-growing region without streptomycin-resistant isolates of E. amylovora. In 2002, during a routine survey for streptomycin resistance, isolates from two neighboring orchards in Wayne County, NY were found to be highly resistant to streptomycin at a concentration of 100 μg/ml. This constitutes the first authenticated report of streptomycin resistance in New York State. Infected trees were shipped at the same time from a single nursery in Michigan. Resistance was caused by the acquisition of the strA-strB gene pair, inserted into the ubiquitous nontransmissible E. amylovora plasmid pEA29. Previously, streptomycin-resistant E. amylovora populations from Michigan were described with a similar mechanism of resistance, although the strA-strB genes are not unique to Michigan. These findings illustrate how unintentional movement of nursery material could undermine efforts to prevent the spread of antibiotic-resistant E. amylovora.


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1307-1313 ◽  
Author(s):  
K. A. Tancos ◽  
K. D. Cox

Streptomycin is the most effective and widely used chemical control in the eastern United States for blossom blight of apple caused by Erwinia amylovora; however, resistance to this antibiotic has been a concern in New York since 2002. From 2011 to 2014, statewide collections of E. amylovora were conducted resulting in the isolation of streptomycin-resistant (SmR) E. amylovora from several commercial orchards. Further genetic analysis of isolates was necessary to understand the origins and the diversity of these bacteria. Clustered regularly interspaced short palindromic repeat (CRISPR) spacer sequencing was employed to explore the diversity and possible origins of New York SmR E. amylovora isolates. The spacer array CR1, CR2, and CR3 regions of 27 SmR E. amylovora isolates and 76 streptomycin-sensitive (SmS) E. amylovora isolates were amplified and subsequently sequenced, revealing 19 distinct CRISPR spacer profiles for New York isolates. The majority of SmR E. amylovora isolates had the same CRISPR profile as SmR E. amylovora isolates discovered in 2002. This may infer that eradication efforts in 2002 failed and the bacterial populations continued to spread throughout the state. Several CRISPR profiles for SmR E. amylovora were identical to SmS E. amylovora collected from the same orchards, leading to the hypothesis that resistance may be developing within New York. Profiles not unique to New York were identical to many isolates from the Midwestern, eastern, and western United States, implying that streptomycin resistance may be due to the introduction of SmR E. amylovora from other regions of the United States. The increased understanding as to how SmR E. amylovora isolates are introduced, evolve, or have become established afforded by CRISPR profiling has been useful for disease management and restricting the movement of streptomycin resistance in New York.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
M’hamed BENADA ◽  
Boualem BOUMAAZA ◽  
Sofiane BOUDALIA ◽  
Omar KHALADI

Abstract Background The development of ecofriendly tools against plant diseases is an important issue in crop protection. Screening and selection process of bacterial strains antagonists of 2 pathogenic bacterial species that limit very important crops, Erwinia amylovora, the causal agent of the fire blight disease, and Pectobacterium carotovorum, the causal agent of bacterial potato soft rot, were reported. Bacterial colonies were isolated from different ecological niches, where both pathogens were found: rhizosphere of potato tubers and fruits and leaves of pear trees from the northwest region of Algeria. Direct and indirect confrontation tests against strains of E. amylovora and P. carotovorum were performed. Results Results showed a significant antagonistic activity against both phytopathogenic species, using direct confrontation method and supernatants of cultures (p<0.005). In vitro assays showed growth inhibitions of both phytopathogenic species. Furthermore, results revealed that the strains of S. plymuthica had a better inhibitory effect than the strains of P. fluorescens against both pathogens. In vivo results on immature pear fruits showed a significant decrease in the progression of the fire blight symptoms, with a variation in the infection index from one antagonistic strain to another between 31.3 and 50%, and slice of potato showed total inhibition of the pathogen (P. carotovorum) by the antagonistic strains of Serratia plymuthica (p<0.005). Conclusion This study highlighted that the effective bacteria did not show any infection signs towards plant tissue, and considered as a potential strategy to limit the fire blight and soft rot diseases.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 386-394 ◽  
Author(s):  
George W. Sundin ◽  
Nicole A. Werner ◽  
Keith S. Yoder ◽  
Herb S. Aldwinckle

The bacterial antagonists Pseudomonas fluorescens A506, Pantoea agglomerans C9-1, and Pantoea agglomerans E325 and preparations of Bacillus subtilis QST 713 containing bacterial endospores and lipopeptide metabolites were evaluated for efficacy in controlling fire blight in Michigan, New York, and Virginia. When examined individually, the biological control materials were not consistently effective in reducing blossom infection. The average reduction in blossom infection observed in experiments conducted between 2001 and 2007 was variable and ranged from 9.1 to 36.1%, while control with streptomycin was consistent and ranged from 59.0 to 67.3%. Incidence of blossom colonization by the bacterial antagonists was inconsistent, and <60% of stigmata had the antagonists present in 12 of 25 experiments. Consistent control of blossom infection was observed when the biological control materials were integrated into programs with streptomycin, resulting in a reduction of the number of streptomycin applications needed to yield similar levels of control. Our results indicate that the prospects for biological control of fire blight in the eastern United States are currently not high due to the variability in efficacy of existing biological control options.


Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 186-191 ◽  
Author(s):  
K. A. Tancos ◽  
E. Borejsza-Wysocka ◽  
S. Kuehne ◽  
D. Breth ◽  
Kerik D. Cox

Erwinia amylovora, the causal agent of fire blight, causes considerable economic losses in young apple plantings in New York on a yearly basis. Nurseries make efforts to only use clean budwood for propagation, which is essential, but E. amylovora may be present in trees that appear to have no apparent fire blight symptoms at the time of collection. We hypothesized that the use of infected budwood, especially by commercial nursery operations, could be the cause, in part, of fire blight outbreaks that often occur in young apple plantings in New York. Our goal was to investigate the presence of E. amylovora in asymptomatic budwood from nursery source plantings as it relates to trees with fire blight symptoms. From 2012 to 2015, apple budwood was collected from two commercial budwood source plantings of ‘Gala’ and ‘Topaz’ at increasing distances from visually symptomatic trees. From these collections, internal contents of apple buds were analyzed for the presence of E. amylovora. E. amylovora was detected in asymptomatic budwood in trees more than 20 m from trees with fire blight symptoms. In some seasons, there were significant (P ≤ 0.05) differences in the incidence of E. amylovora in asymptomatic budwood collected from symptomatic trees and those up to 20 m from them. In 2014 and 2015, the mean E. amylovora CFU per gram recovered from budwood in both the Gala and Topaz plantings were significantly lower in budwood collected 20 m from symptomatic trees. Further investigation of individual bud dissections revealed that E. amylovora was within the tissue beneath the bud scales containing the meristem. Results from the study highlight the shortcomings of current budwood collection practices and the need to better understand the factors that lead to the presence of E. amylovora in bud tissues to ensure the production of pathogen-free apple trees.


1999 ◽  
pp. 85-92 ◽  
Author(s):  
S. Manulis ◽  
D. Zutra ◽  
F. Kleitman ◽  
O. Dror ◽  
E. Shabi ◽  
...  

2019 ◽  
Vol 81 (4) ◽  
pp. 56-65
Author(s):  
A. Molzhigitova ◽  
◽  
A. Mikiciński ◽  
P. Sobiczewski ◽  
◽  
...  

2019 ◽  
Vol 156 (1) ◽  
pp. 257-272 ◽  
Author(s):  
Artur Mikiciński ◽  
Joanna Puławska ◽  
Assel Molzhigitova ◽  
Piotr Sobiczewski

AbstractThis study included eight bacterial isolates originating from the apple phyllosphere or soil environment that were previously selected using the pear fruitlet test (Mikiciński 2017). Identification of these isolates based on phenotypic assays and DNA analysis showed that five of them belonged to species for which an antagonistic activity against Erwinia amylovora and the protective capacity of apple and pear against fire blight were not previously demonstrated. These were L16 identified as Pseudomonas vancouverensis, 3 M as Pseudomonas chlororaphis subsp. aureofaciens, 35 M – Pseudomonas congelans, 43 M – Enterobacter ludwigii, and 59 M – Pseudomonas protegens. Investigation of the biotic relationships between the tested strains and E. amylovora showed that 3 M, 35 M and 59 M inhibited the growth of the pathogen on five out of six media used (NAS, KB, LB, R2A, NAG), but 43 M did not do so on any of these media. Strain L16 did not inhibit the growth of the pathogen on LB or R2A medium. In contrast, all strains grown on medium 925 stimulated the growth of the pathogen, which showed no growth without co-cultivation with these strains. The experiments on apple trees and detached apple branches showed the ability of the tested bacteria to protect flowers at medium to high levels, depending on the experiment (55–93%). In some cases, this protection was even higher than that of the copper product used for comparison. In studies assessing the bacterial ability to protect shoots of M.26, the highest efficacy was observed for strains 35 M (96%) and 43 M (93%) but on ‘Gala Must’ all tested strains showed 100% of efficacy.


Sign in / Sign up

Export Citation Format

Share Document