scholarly journals Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes

Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 904-920 ◽  
Author(s):  
Ming Pei You ◽  
Jay Ram Lamichhane ◽  
Jean-Noël Aubertot ◽  
Martin J. Barbetti

Annual forage legumes across southern Australia continue to be devastated by soilborne diseases. Nine fungicide seed treatments (thiram, metalaxyl, iprodione, phosphonic acid, propamocarb, fluquinconazole, difenoconazole + metalaxyl, ipconazole + metalaxyl, sedaxane + difenoconazole + metalaxyl) and four foliar fungicide treatments (phosphonic acid, metalaxyl, propamocarb, iprodione) were tested on four subterranean clover cultivars against individual oomycete soilborne pathogens Pythium irregulare, Aphanomyces trifolii, and Phytophthora clandestina and the fungal pathogen Rhizoctonia solani. Best treatments were then further tested across southern Australia in 2 years of field experiments. Under controlled conditions, seed treatment with thiram was best against damping-off caused by P. irregulare across the four cultivars (Woogenellup, Riverina, Seaton Park, Meteora), while metalaxyl was the most effective for maximizing root and shoot weights. Against A. trifolii, metalaxyl, iprodione, difenoconazole + metalaxyl, ipconazole + metalaxyl, and sedaxane + difenoconazole + metalaxyl, all reduced damping-off; sedaxane + difenoconazole + metalaxyl, fluquinconazole, and ipconazole + metalaxyl all reduced lateral root disease across two or more cultivars; while iprodione, thiram, and sedaxane + difenoconazole + metalaxyl increased shoot dry weight. Against P. clandestina, metalaxyl was the most effective in reducing tap and lateral root rot followed by ipconazole + metalaxyl or phosphonic acid for tap and lateral rot, respectively. Against R. solani, there were no effects of fungicides. For P. irregulare and P. clandestina, there were strong seed fungicide × cultivar interactions (P < 0.001). Under controlled conditions for foliar fungicide spray treatments, phosphonic acid was best at preventing productivity losses from A. trifolii, but was ineffective against P. clandestina, P. irregulare, or R. solani. Overall, controlled environment studies highlighted strong potential for utilizing seed treatments against individual pathogens to ensure seedling emergence and early survival, with seed and foliar sprays enhancing productivity by reducing seedling damping-off and root disease from individual pathogens. However, in field experiments over 2 years across southern Australia against naturally occurring soilborne pathogen complexes involving these same pathogens, only rarely did fungicide seed treatments or foliar sprays tested show any benefit. It is evident that currently available fungicide seed and/or foliar spray treatment options do not offer effective field mitigation of damping-off and root disease on annual forage legumes that underpin livestock production across southern Australia. The main reason for this failure relates to the unpredictable and ever-changing soilborne pathogen complexes involved, highlighting a need to now refocus away from fungicide options, particularly toward developing and deploying new host tolerances, but also in deploying appropriate cultural control options.

2012 ◽  
Vol 63 (7) ◽  
pp. 672 ◽  
Author(s):  
Tiernan A. O'Rourke ◽  
Megan H. Ryan ◽  
Tim T. Scanlon ◽  
Krishnapillai Sivasithamparam ◽  
Martin J. Barbetti

Subterranean clover (Trifolium subterraneum) is a key pasture legume across southern Australia and elsewhere. Decline in subterranean clover pastures was first recognised in Australia during the 1960s and manifests as an increase in weeds and a decrease in desirable legume species. While both root disease and poor nutrition contribute to subterranean clover pasture decline, the relationships between root disease and nutrition have not been determined. The objective of this study was to define these relationships. Field experiments were undertaken to determine the nutritional and pathogen status of soils and subterranean clover from three Western Australian field sites. Subsequently, controlled environment experiments were undertaken to determine the relative severities of tap and lateral root disease and growth of plants when soil cores taken from these three field sites were amended with a complete nutrient solution or a range of individual macro- or micronutrient treatments. Application of a ‘Hoaglands’ complete nutrient solution decreased the severity of tap root disease by an average of 45% and lateral root disease by 32%. Amendment with K alone reduced the severity of tap root disease an average of 32%; while the application of N alone reduced the severity of tap root disease by 33% and lateral root disease by 27%. Application of Hoaglands, K, N or Zn increased shoot and root dry weight, while Mo only increased shoot dry weight. This is the first report to show that mineral nutrients can substantially ameliorate root disease in subterranean clover. The results demonstrate that while root disease limits plant growth, improvement in the nutritional status of nutrient-impoverished soils can significantly reduce root disease. There is significant potential to incorporate nutrient amendments into an integrated and more sustainable approach to better manage root disease and to increase productivity of pasture legumes where soils are inherently nutrient deficient in one or more nutrients.


1983 ◽  
Vol 55 (5) ◽  
pp. 431-450
Author(s):  
Mauritz Vestberg ◽  
Risto Tahvonen ◽  
Kyösti Raininko

In pot and field experiments carried out in 1979-1981, the systemic funqicide hymexazol prevented satisfactorily soil borne damping-off of sugar beet caused mainly by the fungus Pythium debaryanum auct. non Hesse. The results with the combination hymexazol + thiram were still better. This treatment gave very good protection against the disease up to about two to three weeks after emergence, increased the yield on the average by 5-10 % and produced considerably thicker and denser stands. Thereafter a large number of beets may have become infected, but no great damage was caused as only few died. Band spraying at emergence using hymexazol with a large amount of water as well as spraying into the seed furrow prevented the outbreak of the disease almost completely. Liming had little effect on damping-off.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 99
Author(s):  
Viktorija Gecaitė ◽  
Aušra Arlauskienė ◽  
Jurgita Cesevičienė

Cereal-legume intercropping is important in many low-input agricultural systems. Interactions between combinations of different plant species vary widely. Field experiments were conducted to determine yield formation regularities and plant competition effects of oat (Avena sativa L.)–black medick (Medicago lupulina L.), oat–white clover (Trifolium repens L.), and oat–Egyptian clover (T. alexandrinum L.) under organic farming conditions. Oats and forage legumes were grown in mono- and intercrops. Aboveground dry matter (DM) measured at flowering, development of fruit and ripened grain, productivity indicators, oat grain yield and nutrient content were established. The results showed that oats dominated in the intercropping systems. Oat competitive performance (CPo), which is characterized by forage legumes aboveground mass reduction compared to monocrops, were 91.4–98.9. As the oats ripened, its competitiveness tendency to declined. In oat–forage legume intercropping systems, the mass of weeds was significantly lower compared to the legume monocrops. Oats and forage legumes competed for P, but N and K accumulation in biomass was not significantly affected. We concluded that, in relay intercrop, under favourable conditions, the forage legumes easily adapted to the growth rhythm and intensity of oats and does not adverse effect on their grain yield.


Weed Science ◽  
1972 ◽  
Vol 20 (5) ◽  
pp. 468-471 ◽  
Author(s):  
Y. Eshel ◽  
J. Katan

The effect of timing of preemergence application ofN,N-dimethyl-2,2-diphenylacetamide (diphenamid) on phytotoxicity to pepper(Capsicum annuumL.), efficacy of weed control, and damping-off incidence was studied in greenhouse and field experiments. Delay of application from day of sowing to close to emergence reduced phytotoxicity to pepper while only partially reducing herbicidal action. Addition of a mixture of the contact nonresidual herbicides 6,7-dihydrodipyrido[1,2-a:2′,1′-c]pyrazinediium ion (diquat) and 1,1′-dimethyl-4-4′-bipyridinium ion (paraquat) to a late preemergence application of diphenamid resulted in control of weed seedlings which emerged after sowing of pepper and significantly increased the yield. The increase ofRhizoctoniadamping-off incidence due to diphenamid was also reduced by delayed application.


Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1421-1432 ◽  
Author(s):  
Kelsey Scott ◽  
Meredith Eyre ◽  
Dair McDuffee ◽  
Anne E. Dorrance

Phytophthora, Phytopythium, and Pythium species that cause early-season seed decay and pre-emergence and post-emergence damping off of soybean are most commonly managed with seed treatments. The phenylamide fungicides metalaxyl and mefenoxam, and ethaboxam are effective toward some but not all species. The primary objective of this study was to evaluate the efficacy of ethaboxam in fungicide mixtures and compare those with other fungicides as seed treatments to protect soybean against Pythium, Phytopythium, and Phytophthora species in both high-disease field environments and laboratory seed plate assays. The second objective was to evaluate these seed treatment mixtures on cultivars that have varying levels and combinations of resistance to these soilborne pathogens. Five of eight environments received adequate precipitation in the 14 days after planting for high levels of seedling disease development and treatment evaluations. Three environments had significantly greater stands, and three had significantly greater yield when ethaboxam was used in the seed treatment mixture compared with treatments containing metalaxyl or mefenoxam alone. Three fungicide formulations significantly reduced disease severity compared with nontreated in the seed plate assay for 17 species. However, the combination of ethaboxam plus metalaxyl in a mixture was more effective than either fungicide alone against some Pythium and Phytopythium species. Overall, our results indicate that the addition of ethaboxam to a fungicide seed treatment is effective in reducing seed rot caused by these pathogens commonly isolated from soybean in Ohio but that these effects can be masked when cultivars with resistance are planted.


1999 ◽  
Vol 50 (6) ◽  
pp. 977 ◽  
Author(s):  
M. P. You ◽  
I. T. Riley ◽  
K. Sivasithamparam ◽  
M. J. Barbetti

Surveys were conducted for annual Medicago spp. (medic) pastures in the grain belt of south-west Western Australia during spring 1996 and winter–spring 1997 to determine the relationship of rainfall, cultural practices, soil and plant nutrients, and seedling survival with severity of root disease and numbers of parasitic nematodes. Medic pasture was sampled on 116 farms. Most pastures consisted of a single medic variety, viz. Serena, Santiago, Cyprus, or Caliph, whereas about 33% of sites had mixed varieties. Regression analyses showed that high rainfall and application of phosphorus fertilisers were correlated with increased severity of rot in medic tap roots. Crop history and medic variety were not related to the level of root rot. Numbers of Pratylenchusin medic roots were not correlated with the level of tap or lateral root rot, medic variety, rainfall, or with the application of insecticide, fertilisers, or herbicides. Soil with relatively high levels of P, NO3-, or Fe was associated with an increased level of tap root rot. Soils with high pH were associated with reduced tap root rot. Soils with relatively high K were related to severe lateral root rot, whereas relatively high levels of P in soil were associated with reduced lateral root rot. Plants with high levels of tap root rot showed low levels of Mg, whilst low levels of Ca and NO3– in tissues were related to high levels of lateral root rot. High levels of tap root rot were associated with relatively high levels of total N, K, and S, Cu, Zn, Mn, and NO3- in plant tissues. Plants with relatively high levels of lateral root rot had relatively high levels of Cu in shoots. Of the 116 annual Medicago pastures sampled, only 1% had adequate Mg content and only 19% had adequate Ca content. However, 83% had higher than adequate levels of Cu, 70% had higher than adequate levels of Mn, and all samples showed more than adequate levels of chloride. Experimental sites of M. polymorpha cv. Serena at 6 farms showed that the percentage survival rate of seedlings was negatively correlated with the severity of tap and lateral root rot in the previous year. These results indicate that in the farms surveyed there is a serious threat to annual medic pastures from root rot fungi. The severity of the disease was partly determined by soil conditions and cultural practices.


Plant Disease ◽  
2008 ◽  
Vol 92 (2) ◽  
pp. 287-294 ◽  
Author(s):  
Samuel M. C. Njoroge ◽  
Melissa B. Riley ◽  
Anthony P. Keinath

Incorporating Brassica spp. residue to reduce populations of soilborne fungi and manage damping-off and Fusarium wilt of watermelon (Citrullus lanatus var. lanatus) was studied in two field experiments. Treatments included incorporating flowering Brassica napus cv. Dwarf Essex canola or B. juncea cv. Cutlass mustard and laying black polyethylene mulch at incorporation or 1 month after incorporation, methyl bromide, and a nontreated control. In both years, glucosinolates were identified and quantified in the shoots and roots of the flowering plants. In both years, the total concentration of glucosinolates incorporated per square meter was significantly higher for B. juncea than for B. napus. Isothiocyanates were inconsistently detected in the amended soils and none were detected more than 12 days postincorporation. After incorporation in 2004 and 2005, amended plots had higher populations of Fusarium oxysporum and Pythium spp. than the methyl bromide treatment, and in some treatments, populations were higher than in the control. Fluorescent Pseudomonas spp. were not suppressed in amended soils, and their populations were significantly higher in some amended treatments than those in methyl bromide-treated soils or nontreated control soils. Incidence of damping-off and severity of Fusarium wilt on seedless watermelon cv. Tri-X 313, which is susceptible to Fusarium wilt, were not consistently lower in brassica-amended soils or methyl bromide-treated plots than in nontreated control plots. Therefore, under spring conditions and methods used in this study, neither biofumigation nor methyl bromide fumigation in coastal South Carolina was an effective disease management tool for two soilborne pathogens of watermelon.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1110f-1110
Author(s):  
Nancy W. Callan ◽  
James B. Miller ◽  
Don E. Mathre

Shrunken-2 supersweet (sh2) sweet corn is susceptible to preemergence damping-off caused by Pythium ultimum, especially when planted into cold soil. Bio-priming, a seed treatment which combines the establishment of a bioprotectant on the seed with preplant seed hydration, was developed to protect seeds from damping-off.In a series of field experiments conducted in Montana's Bitterroot and Gallatin Valleys, bio-priming or seed bacterization with Pseudomonas fluorescens AB254 protected sweet corn from P. ultimum damping-off. Bio-priming corn seed with P. fluorescens AB254 was comparable to treatment with the fungicide metalaxyl in increasing seedling emergence. Seedlings from bio-primed seeds emerged from the soil more rapidly than from nontreated seeds and were larger at three weeks postplanting. Seeds of sh 2 and sugary enhancer (se) sweet corn, as well as that of several sh 2 cultivars, were protected from damping-off by bio-priming.


Crops ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 68-87
Author(s):  
Javier Carrillo-Reche ◽  
Adrian C. Newton ◽  
Francesc Ferrando-Molina ◽  
Richard S. Quilliam

Enhancing host defences through induced resistance, disease tolerance, and/or escape, in combination with current disease management regimes may be a valuable strategy to reduce pesticide use. Since both ‘on-farm’ seed priming (OSP) and chitosan priming (CHP) have been reported to confer varying levels of host defence, this study sought to investigate their potential to deliver disease control as a strategy for sustainable management of foliar pathogens in winter barley. Field experiments were conducted to determine the effects of OSP and CHP at two different field sites using three different cultivars under fungicide/non-fungicide regimes. Overall, no evidence was found to suggest that CHP or OSP can induce effective resistance in temperate field conditions. However, these field trials enabled the identification of candidate traits to deliver disease tolerance (and escape) for the primary and secondary spread of powdery mildew, i.e., large canopies and rapid stem elongation respectively. Thus, these seed treatments may deliver disease tolerance and escape traits, but these benefits are dependent upon successful establishment and vigour first. The integration of seed treatments into sustainable crop protection may be better undertaken with spring crops or in semi-arid agriculture where the added vigour at emergence can help compensate for negative environmental interactions.


2012 ◽  
Vol 58 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Jacek Nawrocki

The experiments were carried out in the years 2002 and 2003 on parsley seeds of 6 cultivars: Alba, Berlińska, Cukrowa, Kinga, Lenka, and Vistula. Mycological analysis of parsley seeds showed that the most common inhabitans were fungi from genus <i>Alternaria</i> (mainly <i>A. alternata</i> and <i>A. radicina</i>) and <i>Fusarium</i>, especially <i>F. avenaceum</i> and <i>F. oxysporum</i>. During the glasshouse investigations fungi <i>Alternaria radicina</i>, <i>A. alternata</i> and <i>Fusarium avenaceum</i> were the main reason for parsley damping-off. The highest number of infected seedlings was observed for Berlińska and Kinga, because in both years of experiments these cultivars had the lowest number of healthy seedlings. The highest number of healthy seedlings had cultivars Alba and Lenka, especially in the second year of experiments. In the field experiments not only fungi from genus <i>Alternaria</i> and <i>Fusarium</i> were the most often isolated from diseased parsley seedlings. <i>Fusarium oxysporum</i> was more often isolated from diseased field seedlings than from glasshouse parsley seedlings. Other fungies isolated often from parsley seedlings cultivated in the field were: <i>Pythium</i> spp., <i>Rhizoctonia solani</i>, <i>Cylindrocarpon destructans</i> and <i>Stemphylium botryosum</i>.


Sign in / Sign up

Export Citation Format

Share Document